http://iet.metastore.ingenta.com
1887

access icon free FISS: function identification of subway stations based on semantics mining and functional clustering

  • XML
    175.0048828125Kb
  • PDF
    3.258700370788574MB
  • HTML
    224.9833984375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/7/IET-ITS.2017.0316.html;jsessionid=7ge4357q8md6i.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0316&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ning, Z., Xia, F., Ullah, N., et al: ‘Vehicular social networks: enabling smart mobility’, IEEE Commun. Mag., 2017, 55, (5), pp. 1655.
    2. 2)
      • 2. Xia, F., Wang, J., Kong, X., et al: ‘Exploring human mobility patterns in urban scenarios: A trajectory data perspective’, IEEE Commun. Mag., 2017.
    3. 3)
      • 3. Kong, X., Xu, Z., Shen, G., et al: ‘Urban traffic congestion estimation and prediction based on floating car trajectory data’, Future Gener. Comput. Syst., 2016, 61, pp. 97107.
    4. 4)
      • 4. Kong, X., Song, X., Xia, F., et al: ‘Lotad: long-term traffic anomaly detection based on crowdsourced bus trajectory data’. World Wide Web, 2017, pp. 123.
    5. 5)
      • 5. Kong, X., Xia, F., Wang, J., et al: ‘Time-location-relationship combined service recommendation based on taxi trajectory data’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 12021212.
    6. 6)
      • 6. Yuan, N.J., Zheng, Y., Xie, X., et al: ‘Discovering urban functional zones using latent activity trajectories’, IEEE Trans. Knowl. Data Eng., 2015, 27, (3), pp. 712725.
    7. 7)
      • 7. Karlsson, C.: ‘Clusters, functional regions and cluster policies’. JIBS and CESIS Electronic Working Paper Series (84), 2007, pp. 10101018.
    8. 8)
      • 8. Unsalan, C.: ‘Measuring land development in urban regions using graph theoretical and conditional statistical features’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (12), pp. 39893999.
    9. 9)
      • 9. Zhi, Y., Li, H., Wang, D., et al: ‘Latent spatio-temporal activity structures: a new approach to inferring intra-urban functional regions via social media check-in data’, Geo-spat. Inf. Sci., 2016, 19, (2), pp. 94105.
    10. 10)
      • 10. Assem, H., Xu, L., Buda, T.S., et al: ‘Spatio-temporal clustering approach for detecting functional regions in cities’. 2016 IEEE 28th Int. Conf. on Tools with Artificial Intelligence (ICTAI), 2016, pp. 370377.
    11. 11)
      • 11. Kraft, S., Marada, M.: ‘Delimitation of functional transport regions: understanding the transport flows patterns at the micro-regional level’, Geografiska Ann. B, Hum. Geography, 2017, 99, (1), pp. 7993.
    12. 12)
      • 12. Fan, J., Chen, T., Lu, S.: ‘Unsupervised feature learning for land-use scene recognition’, IEEE Trans. Geosci. Remote Sens., 2017, 55, (4), pp. 22502261.
    13. 13)
      • 13. Yin, J., Soliman, A., Yin, D., et al: ‘Depicting urban boundaries from a mobility network of spatial interactions: a case study of Great Britain with geo-located twitter data’, Int. J. Geogr. Inf. Sci., 2017, 31, (7), pp. 12931313.
    14. 14)
      • 14. Rudinac, S., Zahálka, J., Worring, M.: ‘Discovering geographic regions in the city using social multimedia and open data’. Int. Conf. on Multimedia Modeling, 2017, pp. 148159.
    15. 15)
      • 15. Qi, G., Li, X., Li, S., et al: ‘Measuring social functions of city regions from large-scale taxi behaviors’. 2011 IEEE Int. Conf. on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011, pp. 384388.
    16. 16)
      • 16. Sarkar, S., Chawla, S., Parambath, S.P., et al: ‘Effective urban structure inference from traffic flow dynamics’, IEEE Trans. Big Data, 2017, 3, (2), pp. 181193.
    17. 17)
      • 17. Bhaskar, A., Chung, E.: ‘Passenger segmentation using smart card data’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (3), pp. 15371548.
    18. 18)
      • 18. Zhao, J., Zhang, F., Tu, L., et al: ‘Estimation of passenger route choice pattern using smart card data for complex metro systems’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (4), pp. 790801.
    19. 19)
      • 19. Zhang, F., Zhao, J., Tian, C., et al: ‘Spatiotemporal segmentation of metro trips using smart card data’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 11371149.
    20. 20)
      • 20. Itoh, M., Yokoyama, D., Toyoda, M., et al: ‘Visual exploration of changes in passenger flows and tweets on mega-city metro network’, IEEE Trans. Big Data, 2016, 2, (1), pp. 8599.
    21. 21)
      • 21. Ni, M., He, Q., Gao, J.: ‘Forecasting the subway passenger flow under event occurrences with social media’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 16231632.
    22. 22)
      • 22. Blei, D.M., Ng, A.Y., Jordan, M.I.: ‘Latent dirichlet allocation’, J. Mach. Learn. Res., 2003, 3, (Jan), pp. 9931022.
    23. 23)
      • 23. Girolami, M., Kabán, A.: ‘On an equivalence between plsi and lda’. Proc. of the 26th annual international ACM SIGIR Conf. on Research and Development in Informaion Retrieval, 2003, pp. 433434.
    24. 24)
      • 24. ‘Latent dirichlet allocation’. Available at https://en.wikipedia.org/w/index.php/, accessed 22 August 2017.
    25. 25)
      • 25. ‘K-means clustering’. Available at https://en.wikipedia.org/w/index.php/, accessed 20 August 2017.
    26. 26)
      • 26. Paik, J.H.: ‘A novel tf-idf weighting scheme for effective ranking’. Proc. of the 36th international ACM SIGIR Conf. on Research and Development in Information Retrieval, 2013, pp. 343352.
    27. 27)
      • 27. Frey, B.J., Dueck, D.: ‘Clustering by passing messages between data points’, Science, 2007, 315, (5814), pp. 972976.
    28. 28)
      • 28. ‘Affinity propagation’. Available at https://en.wikipedia.org/w/index.php/, accessed 21 August 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0316
Loading

Related content

content/journals/10.1049/iet-its.2017.0316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address