http://iet.metastore.ingenta.com
1887

access icon free Combining weather condition data to predict traffic flow: a GRU-based deep learning approach

  • XML
    129.501953125Kb
  • PDF
    4.446932792663574MB
  • HTML
    162.7294921875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/7/IET-ITS.2017.0313.html;jsessionid=7duwlwuiuwcj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0313&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Smith, L.B., Demetsky, M.J.: ‘Short-term traffic flow prediction: neural network approach’, Transp. Res. Rec., 1994, 1453, pp. 98104.
    2. 2)
      • 2. Levin, M., Tsao, Y.D.: ‘On forecasting freeway occupancies and volumes (abridgment)’, Transp. Res. Rec., 1980, 773, pp. 4749.
    3. 3)
      • 3. Kamarianakis, Y., Prastacos, P.: ‘Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches’, Transp. Res. Rec., 2003, (1857), pp. 7484..
    4. 4)
      • 4. Van Der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transp. Res. C Emerg. Technol., 1996, 4, (5), pp. 307318.
    5. 5)
      • 5. Lee, S., Fambro, D.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transport. Res. Rec., 1999, 1678, pp. 179188.
    6. 6)
      • 6. Peter, Ä., Silvia, P.: ‘ARIMA vs. ARIMAX-which approach is better to analyze and forecast macroeconomic time series’. Proc. 30th Int. Conf. Mathematical Methods in Economics.Karviná, Czech Republic, 2012.
    7. 7)
      • 7. Mukherjee, S., Osuna, E., Girosi, F.: ‘Nonlinear prediction of chaotic time series using support vector machines’. Neural Networks for Signal Processing [1997] VII. Proc. 1997 IEEE Workshop. IEEE, Amelia Island, FL, USA, September 1997.
    8. 8)
      • 8. Zhang, Y., Liu, Y.: ‘Traffic forecasting using least squares support vector machines’, Transportmetrica, 2009, 5, (3), pp. 193213.
    9. 9)
      • 9. Bing, Q., Gong, B., Yang, Z., et al: ‘Short-term traffic flow local prediction based on combined kernel function relevance vector machine model’, Math. Probl. Eng., 2015, pp. 19.
    10. 10)
      • 10. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: ‘Supervised machine learning: a review of classification techniques’, 2007, pp. 324.
    11. 11)
      • 11. Loh, W.-Y.: ‘Classification and regression trees’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2011, 1, (1), pp. 1423.
    12. 12)
      • 12. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transp. Res. C Emerg. Technol., 2014, 43, pp. 319.
    13. 13)
      • 13. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: ‘Short-term traffic forecasting: overview of objectives and methods’, Transp. Rev., 2004, 24, (5), pp. 533557.
    14. 14)
      • 14. Mori, U, Mendiburu, A, Ãlvarez, M, et al: ‘A review of travel time estimation and forecasting for advanced traveler information systems’, Transportmetrica A Transport Sci., 2015, 11, (2), pp. 119157.
    15. 15)
      • 15. Seabold, S., Perktold, J.: ‘Statsmodels: econometric and statistical modeling with python’. 9th Python in Science Conf., Austin, TX, USA, June 2010.
    16. 16)
      • 16. Washington, S., Karlaftis, M.G., Mannering, F.L.: ‘Statistical and econometric methods for transportation data analysis’ (Chapman & Hall/CRC Press, Boca Raton, 2010, 2nd edn.).
    17. 17)
      • 17. Tsirigotis, L., Vlahogianni, E.I., Karlaftis, M.G.: ‘Does information on weather affect the performance of short-term traffic forecasting models?Int. J. Intell. Transport. Syst. Res., 2012, 10, (1), pp. 110.
    18. 18)
      • 18. Müller, K.R., Smola, A.J., Rätsch, G., et al: ‘Predicting time series with support vector machines’, in Gerstner, W., Germond, A., Hasler, M., Nicoud, J. D. (eds.) Artificial neural networks-ICANN'97. ICANN 1997. Lecture notes in computer science, vol. 1327 (Springer, Berlin, Heidelberg, 1997), pp. 9991004.
    19. 19)
      • 19. Basak, D., Pal, S., Patranabis, D.C.: ‘Support vector regression’, Neural Inf. Process. Lett. Rev., 2007, 11, (10), pp. 203224.
    20. 20)
      • 20. das Chagas Moura, M., Zio, E., Lins, I.D., et al: ‘Failure and reliability prediction by support vector machines regression of time series data’, Reliabil. Eng. Syst. Saf., 2011, 96, (11), pp. 15271534.
    21. 21)
      • 21. Hou, Y., Edara, P., Sun, C.: ‘Traffic flow forecasting for urban work zones’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 17611770.
    22. 22)
      • 22. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, pp. 532.
    23. 23)
      • 23. Friedman, J., Hastie, T., Tibshirani, R.: ‘The elements of statistical learning’ vol. 1 (Springer Series in Statistics, New York, 2001).
    24. 24)
      • 24. Piramu Kailasam, S., Aruna Anushiya, K., Mohammed Sathik, M.: ‘Traffic flow prediction with big data using SAE'S algorithm’, IJCSMC, 2016, 5, (7), pp. 186193.
    25. 25)
      • 25. Sutskever, I., Martens, J., Hinton, G.E.: ‘Generating text with recurrent neural networks’. Proc. Int. Conf. Machine Learning (ICML-11). Bellevue, WA, USA, June 2011.
    26. 26)
      • 26. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    27. 27)
      • 27. Ma, X., Yu, H., Wang, Y., et al: ‘Large-scale transportation network congestion evolution prediction using deep learning theory’, PLoS One, 2015, 10, (3), p. e0119044.
    28. 28)
      • 28. Gers, F.: ‘Long short-term memory in recurrent neural networks’. Unpublished PhD dissertation, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2001.
    29. 29)
      • 29. Chung, J., Gulcehre, C., Cho, K., et al: ‘Empirical evaluation of gated recurrent neural networks on sequence modeling’, arXiv preprint arXiv:1412.3555, 2014.
    30. 30)
      • 30. Fu, R., Zhang, Z., Li, L.: ‘Using LSTM and GRU neural network methods for traffic flow prediction’. Chinese Association of Automation (YAC), Youth Academic Annual Conf. IEEE, Wuhan, China, November, 2016.
    31. 31)
      • 31. Zhao, Z., Chen, W., Wu, X., et al: ‘LSTM network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    32. 32)
      • 32. Jia, Y., Wu, J., Xu, M.: ‘Traffic flow prediction with rainfall impact using a deep learning method’, J. Adv. Transp., 2017, 2017, pp. 110.
    33. 33)
      • 33. Guo, J.: ‘Backpropagation through timeUnpublished manuscript (Harbin Institute of Technology, 2013).
    34. 34)
      • 34. Abadi, M., Barham, P., Chen, J., et al: ‘Tensorflow: a system for large-scale machine learning’, OSDI, 2016, 16, pp. 265283.
    35. 35)
      • 35. Available at https://keras.io/.
    36. 36)
      • 36. Kingma, D., Ba, J.: ‘Adam: a method for stochastic optimization’. arXiv preprint arXiv:1412.6980, 2014.
    37. 37)
      • 37. ‘Caltrans Performance Measurement System’. Available at http://pems.dot.ca.gov/, 23 December 2011.
    38. 38)
      • 38. National Oceanic and Atmospheric Administration’. Available athttps://www.ncdc.noaa.gov/cdo-web/datasets.
    39. 39)
      • 39. Rupp, M., Tkatchenko, A., Müller, K., et al: ‘Fast and accurate modeling of molecular atomization energies with machine learning’, Phys. Rev. Lett., 2012, 108, (5), p. 058301.
    40. 40)
      • 40. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1), pp. 489501.
    41. 41)
      • 41. Pedregosa, F., Varoquaux, G., Gramfort, A., et al: ‘Scikit-learn: machine learning in python’, J. Mach. Learn. Res., 2011, 12, pp. 28252830.
    42. 42)
      • 42. Polson, N.G., Sokolov, V.O.: ‘Deep learning for short-term traffic flow prediction’, Transp. Res. C, Emerg. Technol., 2017, 79, pp. 117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0313
Loading

Related content

content/journals/10.1049/iet-its.2017.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address