http://iet.metastore.ingenta.com
1887

access icon free Exploration and evaluation of individual difference to driving fatigue for high-speed railway: a parametric SVM model based on multidimensional visual cue

  • HTML
    147.1279296875Kb
  • PDF
    2.0941858291625977MB
  • XML
    141.150390625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/6/IET-ITS.2017.0289.html;jsessionid=11rege9rjxofk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0289&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhang, X., Li, J., Liu, Y., et al: ‘Design of a fatigue detection system for high-speed trains based on driver vigilance using a wireless wearable EEG’, Sensors, 2017, 17, (3), pp. 486497.
    2. 2)
      • 2. Federal Railroad Administration: ‘National rail safety action plan final report 2005–2008’, 2008.
    3. 3)
      • 3. National Transport Safety Board (NTSB): ‘Collision of BNSF coal train with the rear end of standing BNSF maintenance-of-way equipment train’ (NTSB, Red Oak, IA, 2011).
    4. 4)
      • 4. National Transport Safety Board (NTSB): ‘Railroad accident brief: Washington metropolitan area transit authority rear-end collision’ (NTSB, Falls Church, VA, 2009).
    5. 5)
      • 5. National Transport Safety Board (NTSB): ‘Chicago transit authority train collides with bumping post and escalator at o'Hare station’ (NTSB, Chicago, IL, 2014).
    6. 6)
      • 6. Chang, H.L., Ju, L.S.: ‘Effect of consecutive driving on accident risk: a comparison between passenger and freight train driving’, Accid. Anal. Prev., 2008, 40, (6), p. 1844.
    7. 7)
      • 7. Furukawa, T., Nakano, H., Hirayama, K., et al: ‘Snoring, obstructive sleep apnea and their health consequences (symposium/relationship between sleep and health care)’, Jpn. J. Psychosom. Med., 2011, 51, pp. 790798.
    8. 8)
      • 8. Zoer, I., Sluiter, J.K., Fringsdresen, M.H.W.: ‘Psychological work characteristics, psychological workload and associated psychological and cognitive requirements of train drivers’, Ergonomics, 2014, 57, (10), pp. 14731487.
    9. 9)
      • 9. Härmä, M., Sallinen, M., Ranta, R., et al: ‘The effect of an irregular shift system on sleepiness at work in train drivers and railway traffic controllers’, J. Sleep Res., 2010, 11, (2), pp. 141151.
    10. 10)
      • 10. Rail Safety and Standards board Ltd: ‘Fatigue and its contribution to railway incidents’, 2015.
    11. 11)
      • 11. Åkerstedt, T., Anund, A., Axelsson, J., et al: ‘Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function’, J. Sleep Res., 2014, 23, (3), pp. 242254.
    12. 12)
      • 12. Leeuwen, W.M.A.V., Anund, A., Fors, C., et al: ‘Countermeasures for fatigue in transportation – a review of existing methods for drivers on road, rail, sea and in aviation’, J. Urol., 2015, 181, (4), pp. 453453.
    13. 13)
      • 13. Tsao, L., Chang, J., Ma, L.: ‘Fatigue of Chinese railway employees and its influential factors: structural equation modelling’, Appl. Ergon., 2017, 62, pp. 131141.
    14. 14)
      • 14. Cabon, P., Coblentz, A., Mollard, R., et al: ‘Human vigilance in railway and long-haul flight operation’, Ergonomics, 1993, 36, (9), pp. 10191033.
    15. 15)
      • 15. Spring, P., McIntosh, A., Caponecchia, C., et al: ‘Level of automation: effects on train driver vigilance’. 3rd Int. Conf. on Rail Human Factors, Lille, Paris, 2009.
    16. 16)
      • 16. Phillips, R.O.: ‘What is fatigue and how does it affect the safety performance of human transport operators?’. Tøi Report, 2014.
    17. 17)
      • 17. Dunn, N., Williamson, A.: ‘Driving monotonous routes in a train simulator: the effect of task demand on driving performance and subjective experience’, Ergonomics, 2012, 55, (9), p. 997.
    18. 18)
      • 18. Darwent, D., Lamond, N., Dawson, D.: ‘The sleep and performance of train drivers during an extended freight-haul operation’, Appl. Ergon., 2008, 39, (5), pp. 614622.
    19. 19)
      • 19. Dorrian, J., Baulk, S.D., Dawson, D.: ‘Work hours, workload, sleep and fatigue in Australian rail industry employees’, Appl. Ergon., 2011, 42, (2), pp. 202209.
    20. 20)
      • 20. Nosal, P.: ‘Automatic train protection and stop system patent EP2210791’. 2010.
    21. 21)
      • 21. Ingre, M., Åkerstedt, T., Peters, B., et al: ‘Subjective sleepiness, simulated driving performance and blink duration: examining individual differences’, J. Sleep Res., 2006, 15, (1), pp. 4753.
    22. 22)
      • 22. Buckelmüller, J., Landolt, H.P., Stassen, H.H., et al: ‘Trait-like individual differences in the human sleep electroencephalogram’, Neuroscience, 2006, 138, (1), pp. 351356.
    23. 23)
      • 23. Van Dongen, H.P., Vitellaro, K.M., Dinges, D.F.: ‘Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda’, Sleep, 2005, 28, (4), pp. 479496.
    24. 24)
      • 24. Wang, X., Xu, C.: ‘Driver drowsiness detection based on non-intrusive metrics considering individual specifics’, Accid. Anal. Prev., 2016, 95, (Pt B), pp. 350357.
    25. 25)
      • 25. Borghini, G., Astolfi, L., Vecchiato, G., et al: ‘Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness’, Neurosci. Biobehav. Rev., 2014, 44, pp. 5875.
    26. 26)
      • 26. Dawson, D., Searle, A.K., Paterson, J.L.: ‘Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry’, Sleep Med. Rev., 2014, 18, (2), pp. 141152.
    27. 27)
      • 27. Variables, R.: ‘In-vehicle prediction of truck driver sleepiness: lane position variables, Masters ThesisLuleå Technical University, 2007.
    28. 28)
      • 28. Forsman, P.M., Vila, B.J., Short, R.A., et al: ‘Efficient driver drowsiness detection at moderate levels of drowsiness’, Accid. Anal. Prev., 2013, 50, (1), pp. 341350.
    29. 29)
      • 29. Satzoda, R.K., Trivedi, M.M.: ‘Drive analysis using vehicle dynamics and vision-based lane semantics’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 918.
    30. 30)
      • 30. Johnson, R.R., Popovic, D.P., Olmstead, R.E., et al: ‘Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model’, Biol. Psychol., 2011, 87, (2), pp. 241250.
    31. 31)
      • 31. Sauvet, F., Bougard, C., Coroenne, M., et al: ‘In-flight automatic detection of vigilance states using a single EEG channel’, IEEE Trans. Biomed. Eng., 2014, 61, (12), pp. 28402847.
    32. 32)
      • 32. Qian, D., Wang, B., Qing, X., et al: ‘Drowsiness detection by Bayesian-copula discriminant classifier based on EEG signals during daytime short nap’, IEEE Trans. Biomed. Eng., 2017, 64, (4), pp. 743754.
    33. 33)
      • 33. Picard, R.: ‘Smartcar: detecting driver stress’. Int. Conf. on Pattern Recognition, 2000, vol. 4, pp. 218221.
    34. 34)
      • 34. Dinges, D.F., Grace, R.: ‘PERCLOS: a valid psychophysiological measure of alertness as assessed by psychomotor vigilance’, Tech Brief, 1998.
    35. 35)
      • 35. Bergasa, L.M., Nuevo, J., Sotelo, M.A., et al: ‘Real-time system for monitoring driver vigilance’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 6377.
    36. 36)
      • 36. Daza, I.G., Bergasa, L.M., Bronte, S., et al: ‘Fusion of optimized indicators from advanced driver assistance systems (ADAS) for driver drowsiness detection’, Sensors, 2014, 14, (1), p. 1106.
    37. 37)
      • 37. Schleicher, R., Galley, N., Briest, S., et al: ‘Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired?’, Ergonomics, 2008, 51, (7), pp. 9821010.
    38. 38)
      • 38. Körber, M., Cingel, A., Zimmermann, M., et al: ‘Vigilance decrement and passive fatigue caused by monotony in automated driving’, Procedia Manuf., 2015, 3, pp. 24032409.
    39. 39)
      • 39. Nishiyama, J., Tanida, K., Kusumi, M., et al: ‘The pupil as a possible premonitor of drowsiness’. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 15861589.
    40. 40)
      • 40. Lowenstein, O., Feinberg, R., Loewenfeld, I.E.: ‘Pupillary movements during acute and chronic fatigue a new test for the objective evaluation of tiredness’, Invest. Ophthalmol., 1963, 2, (2), pp. 138157.
    41. 41)
      • 41. Rowland, L.M., Thomas, M.L., Thorne, D.R., et al: ‘Oculomotor responses during partial and total sleep deprivation’, Aviat. Space Environ. Med., 2005, 76, (7 Suppl.), pp. 104113.
    42. 42)
      • 42. Eskandarian, A., Mortazavi, A.: ‘Evaluation of a smart algorithm for commercial vehicle driver drowsiness detection’. Intelligent Vehicles Symp., 2007, pp. 553559.
    43. 43)
      • 43. Mandal, B., Li, L., Wang, G.S., et al: ‘Towards detection of bus driver fatigue based on robust visual analysis of eye state’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (3), pp. 545557.
    44. 44)
      • 44. Jin, L., Niu, Q., Jiang, Y., et al: ‘Driver sleepiness detection system based on eye movements variables’, Adv. Mech. Eng., 2013, 2013, (5), pp. 17.
    45. 45)
      • 45. Zhao, C., Zhang, X., Zhang, B., et al: ‘Driver's fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 3645.
    46. 46)
      • 46. Akerstedt, T., Ingre, M., Kecklund, G., et al: ‘Reaction of sleepiness indicators to partial sleep deprivation, time of day and time on task in a driving simulator – the DROWSI project’, J. Sleep Res., 2010, 19, (2), pp. 298309.
    47. 47)
      • 47. Johns, D.M.W., Tucker, A.: ‘Monitoring eye and eyelid movements by infrared reflectance oculography to measure drowsiness in drivers’, Somnologie – Schlafforschung und Schlafmedizin, 2007, 11, (4), pp. 234242.
    48. 48)
      • 48. ‘Railway Locomotive Driver's Training and Test Center’. Available at http://www.rdtec.org/Index_index.action, accessed 20 May 2015.
    49. 49)
      • 49. Åkerstedt, T., Gillberg, M.: ‘Subjective and objective sleepiness in the active individual’, Int. J. Neurosci., 1990, 52, (1–2), pp. 2937.
    50. 50)
      • 50. K, K., M, T., T, A., et al: ‘Validation of the Karolinska sleepiness scale against performance and EEG variables’, Clin. Neurophysiol., 2006, 117, (7), pp. 15741581.
    51. 51)
      • 51. Vapnik, V.N.: ‘The nature of statistical learning theory’, 1995, pp. 15641564.
    52. 52)
      • 52. Chen, Y., Hao, Y.: ‘A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction’, Expert Syst. Appl., 2017, 80, pp. 340355.
    53. 53)
      • 53. Jin, L., Niu, Q., Hou, H., et al: ‘Driver cognitive distraction detection using driving performance measures’, Discret. Dyn. Nat. Soc., 2012, 2012, pp. 15551565.
    54. 54)
      • 54. Grandchamp, R., Braboszcz, C., Delorme, A.: ‘Oculometric variations during mind wandering’, Front. Psychol., 2014, 5, (1), p. 31.
    55. 55)
      • 55. Pedrotti, M., Lei, S., Dzaack, J., et al: ‘A data-driven algorithm for offline pupil signal preprocessing and eyeblink detection in low-speed eye-tracking protocols’, Beh. Res. Meth., 2011, 43, (2), pp. 372383.
    56. 56)
      • 56. Geangu, E., Hauf, P., Bhardwaj, R., et al: ‘Infant pupil diameter changes in response to others’ positive and negative emotions’, Plos One, 2011, 6, (11), p. e27132.
    57. 57)
      • 57. Komogortsev, O.V., Gobert, D.V., Jayarathna, S., et al: ‘Standardization of automated analyses of oculomotor fixation and saccadic behaviors’, IEEE Trans. Biomed. Eng., 2010, 57, (11), pp. 26352645.
    58. 58)
      • 58. Hupé, J.M., Lamirel, C., Lorenceau, J.: ‘Pupil dynamics during bistable motion perception’, J. Vision, 2009, 9, (7), p. 10.
    59. 59)
      • 59. ‘Tobii Studio 3.3 User Guide’. Available at http://www.tobiipro.com/product-listing/tobii-pro-x2-60/, accessed 17 March 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0289
Loading

Related content

content/journals/10.1049/iet-its.2017.0289
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address