Driver identification in intelligent vehicle systems using machine learning algorithms

Driver identification in intelligent vehicle systems using machine learning algorithms

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes an applicable driver identification method using machine learning algorithms with driving information. The driving data are collected by a 3-axis accelerometer, which records the lateral, longitudinal and vertical accelerations. In this research, a data transformation way is developed to extract interpretable statistics features from raw 3-axis sensor data and utilise machine learning algorithms to identify drivers. To eliminate the bias caused by the sensor installation and ensure the applicability of their approach, they present a data calibration method which proves to be necessary for a comparative test. Four basic supervised classification algorithms are used to perform on the data set for comparison. To improve classification performance, they propose a multiple classifier system, which combines the outputs of several classifiers. Experimental results based on real-world data show that the proposed algorithm is effective on solving driver identification problem. Among the four basic algorithms, random forests (RFs) algorithm has the greatest performance on accuracy, recall and precision. With the proposed multiple classifier system, a greater performance can be achieved in small number of drivers’ groups. RFs algorithm takes the lead in running speed. In their experiment, ten drivers are involved and over 5,500,000 driving records per driver are collected.


    1. 1)
      • 1. Chen, B., Dong, C., Liu, Y., et al: ‘Real-time information feedback based on a sharp decay weighted function’, Comput. Phys. Commun., 2012, 183, (10), pp. 20812088.
    2. 2)
      • 2. Chen, B., Tong, W., Zhang, W., et al: ‘Flux information feedback strategy in intelligent traffic systems’, EPL, 2012, 97, (1), p. 14001.
    3. 3)
      • 3. Chen, B., Xie, Y., Tong, W., et al: ‘A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems’, Phys. A, Stat. Mech. Appl., 2012, 391, (8), pp. 27302739.
    4. 4)
      • 4. Chen, B., Wang, D.Z., Gao, Y., et al: ‘Effects of traffic lights for Manhattan-like urban traffic network in intelligent transportation systems’, Transportmetrica B, 2016, 6, (1), pp. 113.
    5. 5)
      • 5. Kaplan, S., Guvensan, M.A., Yavuz, A.G., et al: ‘Driver behavior analysis for safe driving: a survey’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (6), pp. 30173032.
    6. 6)
      • 6. Velez, G., Otaegui, O.: ‘Embedding vision-based advanced driver assistance systems: a survey’, IET Intell. Trans. Syst., 2016, 11, (3), pp. 103112.
    7. 7)
      • 7. Halmaoui, H., Joulan, K., Hautiére, N., et al: ‘Quantitative model of the driver's reaction time during daytime fog application to a head up display-based advanced driver assistance system’, IET Intell. Trans. Syst., 2014, 9, (4), pp. 375381.
    8. 8)
      • 8. del Campo, I., Finker, R., Martinez, M.V., et al: ‘A real-time driver identification system based on artificial neural networks and cepstral analysis’. Int. Joint Conf. Neural Networks (IJCNN), Beijing, China, 2014, pp. 18481855.
    9. 9)
      • 9. Dong, W., Li, J., Yao, R., et al: ‘Characterizing driving styles with deep learning’, arXiv preprint, 2016, arXiv:1607.03611.
    10. 10)
      • 10. Johnson, D.A., Trivedi, M.M.: ‘Driving style recognition using a smartphone as a sensor platform’. IEEE Int. Conf. Intelligent Transportation Systems (ITSC), Washington, DC, USA, 2011, pp. 16091615.
    11. 11)
      • 11. Van Ly, M., Martin, S., Trivedi, M.M.: ‘Driver classification and driving style recognition using inertial sensors’, Intell. Veh. Symp. (IV), Gold Coast City, Australia, 2013, pp. 10401045.
    12. 12)
      • 12. Martínez, M.V., Del Campo, I., Echanobe, J., et al: ‘Driving behavior signals and machine learning: a personalized driver assistance system’. IEEE Int. Conf. Intelligent Transportation Systems (ITSC), Las Palmas, Spain, 2015, pp. 29332940.
    13. 13)
      • 13. Wan, P., Wu, C., Lin, Y., et al: ‘On-road experimental study on driving anger identification model based on physiological features by ROC curve analysis’, IET Intell. Trans. Syst., 2017, 11, (5), pp. 290298.
    14. 14)
      • 14. Sun, J, Sun, J.: ‘Real-time crash prediction on urban expressways: identification of key variables and a hybrid support vector machine model’, IET Intell. Trans. Syst., 2016, 10, (5), pp. 331337.
    15. 15)
      • 15. Kim, S., Choi, J., Jeong, S., et al: ‘Effects of variable message sign on driver detours and identification of influencing factors’, IET Intell. Trans. Syst., 2014, 8, (2), pp. 8792.
    16. 16)
      • 16. Lei, Y., He, Z., Zi, Y.: ‘A new approach to intelligent fault diagnosis of rotating machinery’, Exp. Syst. Appl., 2008, 35, (4), pp. 15931600.
    17. 17)
      • 17. Qin, Y., Dong, M., Zhao, F., et al: ‘Road profile classification for vehicle semi-active suspension system based on adaptive neuro-fuzzy inference system’. 2015 IEEE 54th Annual Conf. IEEE Decision and Control (CDC), Osaka, Japan, 2015, pp. 15331538.
    18. 18)
      • 18. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: ‘Feature-based classification of time-series data’, Int. J. Comput. Res., 2001, 10, (3), pp. 4961.
    19. 19)
      • 19. Bergasa, L.M., Almería, D., Almería, J., et al: ‘An app for alerting inattentive drivers and scoring driving behaviors’, Intell. Veh. Symp. Proc., Dearborn, MI, USA, 2014, pp. 240245.
    20. 20)
      • 20. Li, Z., Sun, G., Zhang, F., et al: ‘Smartphone-based fatigue detection system using progressive locating method’, IET Intell. Trans. Syst., 2016, 10, (3), pp. 148156.
    21. 21)
      • 21. Tashk, A., Helfroush, M.S., Karimi, V., et al: ‘An automatic traffic control system based on simultaneous Persian license plate recognition and driver fingerprint identification’, Telecommun. Forum (TELFOR), Belgrade, Serbia, 2012, pp. 17291732.
    22. 22)
      • 22. Albadarneh, A., Albadarneh, I.: ‘Iris recognition system for secure authentication based on texture and shape features’. IEEE Jordan Conf. Applied Electrical Engineering Computing Technologies (AEECT), Amman, Jordan, 2015, pp. 16.
    23. 23)
      • 23. Chen, J., Shen, F., Chen, D.Z., et al: ‘Iris recognition based on human-interpretable features’, IEEE Trans. Inf. Forensics Secur., 2016, 11, (7), pp. 14761485.
    24. 24)
      • 24. Miyajima, C., Nishiwaki, Y., Ozawa, K., et al: ‘Driver modeling based on driving behavior and its evaluation in driver identification’. Proc. IEEE, 2007, 95, (2), pp. 427437.
    25. 25)
      • 25. Wakita, T., Ozawa, K., Miyajima, C., et al: ‘Driver identification using driving behavior signals’, IEICE Trans. Inf. Syst., 2006, 89, (3), pp. 11881194.
    26. 26)
      • 26. Vaitkus, V., Lengvenis, P., Zylius, G.: ‘Driving style classification using long-term accelerometer information’. IEEE Int. Conf. Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2014, pp. 641644.
    27. 27)
      • 27. Phumphuang, P., Wuttidittachotti, P., Saiprasert, C.: ‘Driver identification using variance of the acceleration data’. IEEE Computer Science and Engineering Conf. (ICSEC), Chiang Mai, Thailand, 2015, pp. 16.
    28. 28)
      • 28. Qi, G., Du, Y., Wu, J., et al: ‘Leveraging longitudinal driving behaviour data with data mining techniques for driving style analysis’, IET Intell. Transp. Syst., 2015, 9, (8), pp. 792801.
    29. 29)
      • 29. Sathyanarayana, A., Sadjadi, S.O., Hansen, J.H.L.: ‘Leveraging sensor information from portable devices towards automatic driving maneuver recognition’. IEEE Int. Conf. Intell. Transport Systems, Anchorage, AK, USA, 2012, pp. 660665.
    30. 30)
      • 30. Engelbrecht, J., Booysen, M.J., van Rooyen, G.J., et al: ‘Survey of smartphone-based sensing in vehicles for intelligent transportation system applications’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 924935.
    31. 31)
      • 31. Vandenberghe, W., Vanhauwaert, E., Verbrugge, S., et al: ‘Feasibility of expanding traffic monitoring systems with floating car data technology’, IET Intell. Transp. Syst, 2012, 6, (4), pp. 347354.
    32. 32)
      • 32. Shin, E.H.: ‘Accuracy improvement of low cost INS/GPS for land applications’ (University of Calgary, Calgary, Canada, 2001, 1st edn.).
    33. 33)
      • 33. Brown, P.F., Desouza, P.V., Mercer, R.L., et al: ‘Class-based n-gram models of natural language’, Comput. Linguist., 1992, 18, (4), pp. 467479.
    34. 34)
      • 34. Peterson, L.E.: ‘K-nearest neighbor’, Scholarpedia, 2009, 4, (2), p. 1883.
    35. 35)
      • 35. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
    36. 36)
      • 36. Rosenblatt, F.: ‘The perceptron: a probabilistic model for information storage and organization in the brain’, Psychological Rev., 1958, 65, (6), p. 386.
    37. 37)
      • 37. Freund, Y., Schapire, R., Abe, N.: ‘A short introduction to boosting’, J. Jpn. Soc. Artif. Intell., 1999, 14, (771–780), p. 1612.
    38. 38)
      • 38. Taillardat, M., Mestre, O., Zamo, M., et al: ‘Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics’, Mon. Weather Rev., 2016, 144, (6), pp. 23752393.
    39. 39)
      • 39. Dreano, D., Tsiaras, K., Triantafyllou, G., et al: ‘Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the red sea’, Ocean Dyn., 2017, 67, (7), pp. 113.
    40. 40)
      • 40. Catal, C., Nangir, M.: ‘A sentiment classification model based on multiple classifiers’, Appl. Soft Comput., 2017, 50, pp. 135141.
    41. 41)
      • 41. Andrea, S., Paola, A., Ivano, A., et al: ‘Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index’, Comput. Phys. Commun, 2010, 181, (2), pp. 259270.

Related content

This is a required field
Please enter a valid email address