FCD data for on-street parking search time estimation

FCD data for on-street parking search time estimation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the problem of estimating on-street parking search time employing floating car data (FCD). The parking search path is modelled as a spiral around the destination. Model calibration is based only on data detected by tracked vehicles. The proposed methodology can be used both in real time to support user information and off-line to assess transport plans. In order to demonstrate its effectiveness for advanced transport modelling in urban areas, the results of a real-size application to the city of Rome are presented.


    1. 1)
      • 1. ‘Google Maps. Information on parking difficulty’. Available at, accessed December 2017.
    2. 2)
      • 2. Polak, J.W., Vythoulkas, P.: ‘An assessment of the state-of-the-art in the modelling of parking behaviour’. Report 752, Transport Studies Unit, Oxford University, United Kingdom, 1993.
    3. 3)
      • 3. Brooke, S., Ison, S., Quddus, M.: ‘On-street parking search review and future research direction’, Transp. Res. Rec., 1998, 2469, pp. 6575.
    4. 4)
      • 4. Thompson, R.G., Richardson, A.J.: ‘A parking search model’, Transp. Res. A, Policy Pract., 1998, 32, (3), pp. 159170.
    5. 5)
      • 5. Axhausen, K.W., Polak, J.W., Boltze, M., et al: ‘Effectiveness of the parking guidance information system in Frankfurt and Main’, Traffic Eng. Control, 1994, 35, (5), pp. 304310.
    6. 6)
      • 6. Bradley, M., Layzell, A.: ‘Parking behavior in a suburban town-centre: an analysis of town surveys in Kingston-Upon-Thames’. Report 354, Transport Studies Unit, Oxford University, United Kingdom, 1986.
    7. 7)
      • 7. Salomon, I.: ‘Towards a behavioral approach to city-centre parking: the case of Jerusalem's CBD’, Cities, 1986, 3, (3), pp. 200208.
    8. 8)
      • 8. Fletcher, D.: ‘A five-year study of effects of fines, gender, race, and age on illegal parking in spaces reserved for people with disabilities’, Rehabil. Psychol., 1995, 40, (3), pp. 203210.
    9. 9)
      • 9. Axhausen, K.W., Polak, J.: ‘Choice of parking: stated preference approach’, Transportation, 1991, 18, pp. 5981.
    10. 10)
      • 10. Gantelet, E., Lefauconnier, A.: ‘The time looking for a parking space: strategies, associated nuisances and stakes of parking management in France’. Association for European Transport, Strasbourg, France, September 2006.
    11. 11)
      • 11. Hess, S., Polak, J.W.: ‘An analysis of parking behaviour using discrete choice models calibrated on SP datasets’. ERSA Conf. papers, European Regional Science Association, Vienna, Austria, 2004, p. 60.
    12. 12)
      • 12. Yu, S., Li, B., Zhang, Q., et al: ‘An optimal parking space search model based on fuzzy multiple attribute decision making’. Proc. of 10th World Congress on Intelligent Control and Automation, Beijing, China, 2012.
    13. 13)
      • 13. Marsden, G.: ‘The evidence base for parking policies – a review’, Transp. Policy, 2006, 13, (6), pp. 447457.
    14. 14)
      • 14. Van der Waerden, P., Borgers, A.W.J., Timmermans, H.J.P.: ‘Consumer response to the introduction of paid parking in a regional shopping center’. 88th Annual Meeting of the Transportation Research Board, Washington, 2009.
    15. 15)
      • 15. Leiser, D., Stern, E.: ‘Determinants of subjective time estimates in simulated urban driving’, Transp. Res. A, Policy Pract., 1988, 22, (3), pp. 175182.
    16. 16)
      • 16. Horni, A., Montini, L., Waraich, R.A., et al: ‘An agent-based cellular automaton cruising-for-parking simulation’. Proc. 13th Int. Conf. on Travel Behaviour Research, Toronto, Canada, 2012.
    17. 17)
      • 17. Gallo, M., D'Acierno, L., Montella, B.: ‘A multiplayer model to simulate cruising for parking in urban areas’, Transp. Policy, 2011, 18, pp. 735744.
    18. 18)
      • 18. Carrese, S., Gori, S., Picano, T.: ‘Relationship between parking location and traffic flows in urban areas’, in Bianco, L., Toth, P. (Ed.): ‘Advanced methods in transportation analysis. Transportation analysis’ (Springer, Berlin, 1996), pp. 183214.
    19. 19)
      • 19. Young, W.: ‘PARKSIM/1: a simulation model of driver behaviour in parking lots’, Traffic Eng. Control, 1986, 27, (12), pp. 606613.
    20. 20)
      • 20. Young, W., Thompson, R.G.: ‘PARKSIM/1: a computer graphics approach for parking lot layouts’, Traffic Eng. Control, 1987, 28, (3), pp. 120123.
    21. 21)
      • 21. Dieussaert, K., Aerts, K., Steenberghen, T., et al: ‘SUSTAPARK: an agent-based model for simulating parking search’. 12th AGILE Int. Conf. on Geographic Information Science, Hannover, Germany, 2009.
    22. 22)
      • 22. Benenson, I., Martens, K., Birfir, S.: ‘PARKAGENT: an agent-based model of parking in the city’, Comput. Environ. Urban Syst., 2008, 32, pp. 431439.
    23. 23)
      • 23. Van der Waerden, P., Timmermans, H., Van Hove, L.: ‘GPS data and car drivers’ parking search behavior in the city of Turnhout, Belgium’. Proceeedings of GIS Ostrava 2014 – Geoinformatics for Intelligent Transportation, Ostrava, 2014.
    24. 24)
      • 24. Kaplan, S., Bekhor, S.: ‘Exploring en-route parking type and parking-search route choice: decision making framework and survey design’. Int. Choice Modelling Conf., Leeds, UK, 2011.
    25. 25)
      • 25. Montini, L., Horni, A., Rieser-Schüssler, N., et al: ‘Searching for parking in GPS data’. 12th Swiss Transport Research Conf., Ascona, 2012.
    26. 26)
      • 26. Belloche, S.: ‘On-street parking search time modelling and validation with survey-based data’, Transp. Res. Procedia, 2015, 6, pp. 313324.
    27. 27)
      • 27. Cascetta, E.: ‘Transportation systems analysis. Models and applications’ (Springer, Berlin, 2009).
    28. 28)
      • 28. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: ‘Current map-matching algorithms for transport applications: state-of-the art and future research directions’, Transp. Res. C, Emerg. Technol., 2007, 15, pp. 312328.
    29. 29)
      • 29. Kim, T., Haghani, A., Kim, H.: ‘Algorithms for one-to-one time dependent shortest path on real networks’. Proc. of TRB Annual Meeting, Washington DC, USA, 2013.
    30. 30)
      • 30. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: ‘Shortest paths algorithms: theory and experimental evaluation’. Technical Report 93-1480, Computer Science Department, Stanford University, 1993.
    31. 31)
      • 31. Zhan, F.B.: ‘Three fastest shortest path algorithms on real road networks: data structures and procedures’, J. Geogr. Inf. Decis. Anal., 1997, 1, (1), pp. 6982.
    32. 32)
      • 32. Lim, Y., Kim, H.: ‘A shortest path algorithm for real road network based on path overlap’, J. East. Asia Soc. Transp. Stud., 2005, 6, pp. 14261438.

Related content

This is a required field
Please enter a valid email address