access icon free Multi-level thinking cellular automata using granular computing title

This study discusses the use of granular computing for representing multi-thinking cellular automata model. In addition, the learning in cellular automata model is examined from the viewpoint of granular computing. A granular cellular automata system for simulating the changes needed in cases based on assessments of individual and group decision from the viewpoint of soft computing as a new formulation of granular computing and cellular automata is presented here. The architecture of the proposed model and the results of simulation of novel approach are given. Results from the implementation enrich granular computing cellular automata hybrid system and shed a new light on the concept formulation of the model and the learning in it.

Inspec keywords: cellular automata; granular computing

Other keywords: multi level thinking cellular automata; soft computing; granular computing; granular cellular automata system

Subjects: Automata theory

References

    1. 1)
      • 5. Horng, G.: ‘Using cellular automata for parking recommendations in smart environments’, PLOS one, 2014, 14, pp. 15.
    2. 2)
      • 1. Wongthanavasu, S., Ponkaew, J.: ‘A cellular automata-based learning method for classification’, Expert Syst. Appl., 2016, 49, pp. 99111.
    3. 3)
      • 25. Brockfeld, E., Barlovic, R., Schadschneider, A., et al: ‘Optimizing traffic lights in a cellular automaton model for city traffic’, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 2001, 64, (5).
    4. 4)
      • 13. Hassan, Y.: ‘Rough set adaptive in the model based of cellular automata and multi-agents’, J. Emerging Trends Comput. Inf. Sci., 2011, 2, (9), pp. 440446.
    5. 5)
      • 18. Wang, Y., Chen, Y.-Y.: ‘Modeling the effect of microscopic driving behaviors on kerner's time-delayed traffic breakdown at traffic signal using cellular automata’, Phys. A, Stat. Mech. Appl., 2016, 463, pp. 1224.
    6. 6)
      • 7. Hassan, Y., Yamaguchi, D., Tazaki, E.: ‘New model based on cellular automata and multiagent techniques’, Cybern. Syst., 2007, 38, pp. 4782.
    7. 7)
      • 20. Liang, Z., Wakahara, Y.: ‘Real-time urban traffic amount prediction models for dynamic route guidance systems’, EURASIP J. Wirel. Commun. Netw., 2014, 85, pp. 115.
    8. 8)
      • 3. Hassan, Y.: ‘Multi-layer rough cellular automata for web structure adaptation’, Wulfenia J., 2014, 21, pp. 15.
    9. 9)
      • 23. Jasti, V.K., Fred Higgs, C.: ‘A fast first order model of a rough annular shear cell using cellular automata’, Granular Matter, 2010, 12, (1), pp. 97106.
    10. 10)
      • 2. Zhou, D., Dai, X.: ‘Integrating granular computing and bioinformatics technology for typical process routes elicitation: A process knowledge acquisition approach’, Eng. Appl. Artif. Intell., 2015, 45, pp. 4656.
    11. 11)
      • 16. Hassan, Y., Tazaki, E.: ‘Emergence decision using hybrid rough sets/cellular automata’, Int. J. Syst. Cybern. ‘Kybernetes’, 2006, 35, (6), pp. 797813.
    12. 12)
      • 11. Chiaselotti, G., Ciucci, D., Gentile, T.: ‘Simple graphs in granular computing’, Inf. Sci., 2016, 340, pp. 279304.
    13. 13)
      • 21. Zapotecatl, J.L., Rosenblueth, D.A., Gershenson, C.: ‘Deliberative self-organizing traffic lights with elementary cellular automata’, Complexity, 2017, 2017, Article ID 7691370, p. 15.
    14. 14)
      • 9. Marinack, M.C.Jr., Fred Higgs, C.: ‘Three-dimensional physics-based cellular automata model for granular shear flow’, Powder Technol., 2015, 277, pp. 287302.
    15. 15)
      • 27. Jiang, R., Wu, Q.: ‘A stopped time dependent randomization cellular automata model for traffic flow controlled by traffic light’, Phys.A, Stat. Mech. Appl., 2006, 364, pp. 493496.
    16. 16)
      • 15. Benzhai, H., Lei, L., Ge, Q., et al: ‘Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata’, Bioprocess Biosyst. Eng., 2014, 37, (10), pp. 20492059.
    17. 17)
      • 12. Komatsuzaki, T., Iwata, Y.: ‘A combined approach for modeling particle behavior in granular impact damper using discrete element method and cellular automata’, Int. J. Mech. Mater. Design, 2017, 13, (3) pp. 407417.
    18. 18)
      • 6. Caprio, D., Stafiej, J., Luciano, G., et al: ‘3D cellular automata simulations of intra and intergranular corrosion’, Corros. Sci., 2016, 112, pp. 438450.
    19. 19)
      • 24. Ding, J.-X., Huang, H.-J.: ‘A cellular automata model of traffic flow with consideration of the inertial driving behavior’, Int. J. Mod. Phys. C ., 2010, 21, (4), pp. 549557.
    20. 20)
      • 10. Li, J., Mei, C., Xu, W., et al: ‘Concept learning via granular computing: A cognitive viewpoint’, Inf. Sci., 2015, 298, pp. 447467.
    21. 21)
      • 8. Lee, J., Peper, F., Leibnitz, K., et al: ‘Characterization of random fluctuation-based computation in cellular automata’, Inf. Sci., 2016, 352, pp. 150166.
    22. 22)
      • 14. Hassan, Y.F., Moustafa, A., Younes, A.: ‘A customizable quantum-dot cellular automata building block for the synthesis of classical and reversible circuits’, Sci. World J., 2015, 2015, p. 9, doi: 10.1155/2015/705056.
    23. 23)
      • 22. Zamith, M., Leal-Toledo, R.C.P., Clua, E., et al: ‘A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction’, J. Comput. Sci., 2015, 9, pp. 5156.
    24. 24)
      • 4. Ruan, Y., Li, A.: ‘A new small-world network created by cellular automata’, Phys. A, Stat. Mech. Appl., 2016, 456, pp. 106111.
    25. 25)
      • 26. Poli, J.Jr., Monteiro, L.H.A.: ‘Improving vehicle flow with traffic lights’, Adv. Complex Syst., 2005, 8, (1), pp. 5963.
    26. 26)
      • 17. Pamučar, D., Ljubojević, S.: ‘Cost and risk aggregation in multi-objective route planning for hazardous materials transportation – A neuro-fuzzy and artificial bee colony approach’, Expert Syst. Appl., 2016, 16, pp. 115.
    27. 27)
      • 19. Botía, J.F., Cárdenas, A.M., Sierra, C.M.: ‘Fuzzy cellular automata and intuitionistic fuzzy sets applied to an optical frequency comb spectral shape’, Eng. Appl. Artif. Intell., 2017, 62, pp. 181194.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0195
Loading

Related content

content/journals/10.1049/iet-its.2017.0195
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading