http://iet.metastore.ingenta.com
1887

Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features

Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

License plate recognition (LPR) is an important component of intelligent transportation systems. Compared with letters and numbers, Chinese characters contain more information, making automatic recognition more difficult. Accurate Chinese LPR (CLPR) is determined by three factors: training dataset, feature extractor, and classifier. Most license plates with benchmark dataset contain only letters and numbers; thus, the authors build a large dataset for CLPR. Convolutional neural networks (CNNs) can be used to extract inherent image features, on all levels of abstraction. CNNs can be used for classification if they have a sufficient number of fully connected layers. This implies that CNNs must be trained using gradient descent-based methods, which often yields sub-optimal results. Extreme learning machines (ELMs) demonstrate impressive performance on classification, with good generalisation. Therefore, the authors propose a novel deep architecture for CLPR which combines a CNN and an ELM. Firstly, a CNN without fully connected layers, working as a feature extractor, learns deep features associated with characters in written Chinese. Then, a kernel-based ELM (KELM) classifier, which accepts CNN features as input, is utilised for classification. Compared with CNNs that use Softmax, support vector machines and ELMs, the CNN that uses KELM yields competitive results in a shorter training time.

References

    1. 1)
      • 1. Tian, B., Morris, B.T., Tang, M., et al: ‘Hierarchical and networked vehicle surveillance in ITS: a survey’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (1), pp. 2548.
    2. 2)
      • 2. Wen, Y., Lu, Y.-L., Yan, J.-Q., et al: ‘An algorithm for license plate recognition applied to intelligent transportation system’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 830840.
    3. 3)
      • 3. Lu, Q.-B., Zhou, W.-G., Fang, L., et al: ‘Robust blur kernel estimation for license plate images from fast moving vehicles’, IEEE Trans. Image Process., 2016, 25, (5), pp. 23112322.
    4. 4)
      • 4. Asif, M.R., Chun, Q., Hussain, S., et al: ‘Multiple license plate detection for Chinese vehicles in dense traffic scenarios’, IEEE Trans. Intell. Transp. Syst., 2016, 10, (8), pp. 535544.
    5. 5)
      • 5. Hsu, G.-S., Chen, J.-C., Chung, Y.-Z., et al: ‘Application-oriented license plate recognition’, IEEE Trans. Intell. Transp. Syst., 2013, 62, (2), pp. 552561.
    6. 6)
      • 6. Rajput, H., Som, T., Kar, S.: ‘An automated vehicle license plate recognition system’, IEEE Comput. Soc., 2015, 48, (8), pp. 5661.
    7. 7)
      • 7. Lawlor, S., Sider, T., Eluru, N., et al: ‘Detecting convoys using license plate recognition data’, IEEE Trans. Signal Inf. Process. Over Netw., 2016, 2, (3), pp. 391405.
    8. 8)
      • 8. Chen, X.-Y., Peng, X.-Y., Li, J.-B., et al: ‘Overview of deep kernel learning based techniques and applications’, J. Netw. Intell., 2016, 1, (3), pp. 8297.
    9. 9)
      • 9. Chen, X.-Y., Xiang, S.-M., Liu, L.-C., et al: ‘Vehicle detection in satellite images by hybrid deep convolutional neural networks’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (10), pp. 17971801.
    10. 10)
      • 10. Weng, R.-L., Lu, J.-W., Tan, Y.-P., et al: ‘Learning cascaded deep auto-encoder network for face alignment’, IEEE. Trans. Multimedia, 2016, 18, (10), pp. 20662078.
    11. 11)
      • 11. Sarikaya, R., Hinton, G.E., Deoras, A.: ‘Application of deep belief networks for natural language understanding’, IEEE/ACM Trans. Audio Speech Lang. Process., 2016, 22, (4), pp. 778784.
    12. 12)
      • 12. Huang, G.-B., Bai, Z., Kasun, L.L.C., et al: ‘Local receptive field based extreme learning machine’, IEEE Comput. Intell. Mag., 2015, 10, (2), pp. 1829.
    13. 13)
      • 13. Lecun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    14. 14)
      • 14. Liu, M.-C., Shi, J.-X., Li, Z., et al: ‘Towards better analysis of deep convolutional neural networks’, IEEE Trans. Vis. Comput. Graph., 2017, 23, (1), pp. 91100.
    15. 15)
      • 15. Zhang, X.-Y., Zou, J.-H., He, K.-M., et al: ‘Accelerating very deep convolutional networks for classification and detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 19431955.
    16. 16)
      • 16. Geng, M.-Y., Wang, Y.-W., Tian, Y.-H., et al: ‘CNUSVM: hybrid CNN-uneven SVM model for imbalanced visual learning’. Proc. Int. Conf. Multimedia Big Data, Taipei, August 2016, pp. 186193.
    17. 17)
      • 17. Rikhtegar, A., Pooyan, M., Manzuri-Shalmani, M.T.: ‘Genetic algorithm-optimised structure of convolutional neural network for face recognition application’, IET Comput. Vis., 2016, 10, (6), pp. 559566.
    18. 18)
      • 18. Zeng, Y.-J., Xu, X., Fang, Y.-Q., et al: ‘Traffic sign recognition using deep convolutional networks and extreme learning machine’. Proc. Int. Conf. Intelligence Science and Big Data Engineering, Suzhou, October 2015, pp. 272280.
    19. 19)
      • 19. Zeng, Y.-J., Xu, X., Shen, S.-Y., et al: ‘Traffic sign recognition using kernel extreme learning machine with deep perceptual features’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 16471653.
    20. 20)
      • 20. Huang, Z.-Y., Yu, Y.-L., Gu, J., et al: ‘An efficient method for traffic sign recognition based on extreme learning machine’, IEEE Trans. Cybern., 2017, 47, (4), pp. 920933.
    21. 21)
      • 21. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: ‘Extreme learning machine: a new learning scheme of feedforward neural networks’. Proc. Int. Joint Conf. Neural Networks, Budapest, July 2004, pp. 985990.
    22. 22)
      • 22. Huang, G.-B., Zhou, H.-M., Ding, X.-J., et al: ‘Extreme learning machine for regression and multiclass classification’, IEEE Trans. Syst. Man Cybern. B, 2012, 42, (2), pp. 513529.
    23. 23)
      • 23. Huang, G.-B.: ‘An insight into extreme learning machines: random neurons, random features and kernels’, Cogn. Comput., 2014, 6, (3), pp. 376390.
    24. 24)
      • 24. Tang, J.-X., Deng, C.-W., Huang, G.-B.: ‘Extreme learning machine for multilayer perceptron’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (4), pp. 809821.
    25. 25)
      • 25. Du, S., Ibrahim, M., Shehata, M., et al: ‘Automatic license plate recognition (ALPR): a state-of-the-art review’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (2), pp. 311325.
    26. 26)
      • 26. Chang, S.-L., Chen, L.-S., Chung, Y.-C., et al: ‘Automatic license plate recognition’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (1), pp. 4253.
    27. 27)
      • 27. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., et al: ‘A license plate-recognition algorithm for intelligent transportation system applications’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (3), pp. 377392.
    28. 28)
      • 28. Wen, Y., Lu, Y., Yan, J.-Q., et al: ‘An algorithm for license plate recognition applied to intelligent transportation system’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (3), pp. 830845.
    29. 29)
      • 29. Dun, J.-Y., Zhang, S.-Y., Ye, X.-Z., et al: ‘Chinese license plate localization in multi-lane with complex background based on concomitant colors’, IEEE Trans. Intell. Transp. Syst. Mag., 2015, 7, (3), pp. 5161.
    30. 30)
      • 30. Gou, C., Wang, K.-F., Yao, Y.-J., et al: ‘Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (4), pp. 10961107.
    31. 31)
      • 31. Wang, N.-G., Zhu, X.-W., Zhang, J.: ‘License plate segmentation and recognition of Chinese vehicle based on BPNN’. Proc. Int. Conf. IEEE Computational Intelligence and Security, Wuxi, China, December 2016, pp. 403406.
    32. 32)
      • 32. Chen, J.-R.: ‘Chinese license plate identification based on Android platform’. Proc. Int. Conf. IEEE Computational Intelligence and Communication Technology, Ghaziabad, India, February 2017, pp. 15.
    33. 33)
      • 33. Wah, C., Branson, S., Welinder, P., et al: ‘The Caltech-UCSD birds-200-2011 dataset’, California Institute of Technology, 2011, pp. 20111026120541847.
    34. 34)
      • 34. Everingham, M., Van Gool, L., Williams, C.K.I., et al: ‘The PASCAL visual object classes challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338.
    35. 35)
      • 35. Niu, X.-X., Suen, C.-Y.: ‘A novel hybrid CNN–SVM classifier for recognizing handwritten digits’, Pattern Recognit., 2012, 2012, (45), pp. 13181325.
    36. 36)
      • 36. Tissera, M.D., McDonnell, M.D.: ‘Deep extreme learning machines: supervised autoencoding architecture for classification’, Neurocomputing, 2016, 2016, (174), pp. 4249.
    37. 37)
      • 37. Yang, Y., Zhang, W.-G., Guo, P.: ‘Realization for Chinese vehicle license plate recognition based on computer vision and fuzzy neural network’. Proc. Int. Conf. Display and Photonics, Nanjing, China, July 2010, pp. 77491G77496G.
    38. 38)
      • 38. Yuan, X., Hao, X.-L., Chen, H.-J., et al: ‘Robust traffic sign recognition based on color global and local oriented edge magnitude patterns’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (4), pp. 14661477.
    39. 39)
      • 39. Ashtari, A.H., Nordin, M.J., Fathy, M.: ‘An Iranian license plate recognition system based on color features’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (4), pp. 16901705.
    40. 40)
      • 40. Karasuyama, M., Tackeuchi, I.: ‘Nonlinear regularization path for quadratic loss support vector machines’, IEEE Trans. Neural Netw., 2011, 22, (10), pp. 16131625.
    41. 41)
      • 41. Sangari, A., Sethares, W.: ‘Convergence analysis of two loss functions in Soft-Max regression’, IEEE Trans. Signal Process., 2016, 64, (5), pp. 12801288.
    42. 42)
      • 42. Delgado, M.F., Cernadas, E., Barro, S., et al: ‘Do we need hundreds of classifiers to solve real world classification problems’, J. Mach. Learn. Res., 2014, 2014, (15), pp. 31333181.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0136
Loading

Related content

content/journals/10.1049/iet-its.2017.0136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address