http://iet.metastore.ingenta.com
1887

access icon free Feature selection-based approach for urban short-term travel speed prediction

  • PDF
    4.18974494934082MB
  • HTML
    133.9599609375Kb
  • XML
    151.751953125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/6/IET-ITS.2017.0059.html;jsessionid=1kln26d2pgfo4.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0059&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 319.
    2. 2)
      • 2. Chen, C., Wang, Y., Li, L., et al: ‘The retrieval of intra-day trend and its influence on traffic prediction’, Transp. Res. C, Emerg. Technol., 2012, 22, pp. 103118.
    3. 3)
      • 3. Haworth, J., Cheng, T.: ‘Non-parametric regression for space–time forecasting under missing data’, Comput. Environ. Urban Syst., 2012, 36, (6), pp. 538550.
    4. 4)
      • 4. Kamarianakis, Y., Shen, W., Wynter, L.: ‘Real-time road traffic forecasting using regime-switching space–time models and adaptive LASSO’, Appl. Stoch. Models Bus. Ind., 2012, 28, (4), pp. 297315.
    5. 5)
      • 5. Du, L., Peeta, S., Kim, Y.H.: ‘An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks’, Transp. Res. B, Methodol., 2012, 46, (1), pp. 235252.
    6. 6)
      • 6. Sun, S., Huang, R., Gao, Y.: ‘Network-scale traffic modeling and forecasting with graphical lasso and neural networks’, J. Transp. Eng., 2012, 138, (11), pp. 13581367.
    7. 7)
      • 7. Yildirim, U., Çataltepe, Z.: ‘Short time traffic speed prediction using data from a number of different sensor locations’.  23rd Int. Symp. Computer and Information Sciences ISCIS'08, 2008, pp. 16.
    8. 8)
      • 8. Chandra, S.R., Al-Deek, H.: ‘Predictions of freeway traffic speeds and volumes using vector autoregressive models’, J. Intell. Transp. Syst., 2009, 13, (2), pp. 5372.
    9. 9)
      • 9. Kamarianakis, Y., Gao, H., Prastacos, P.: ‘Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions’, Transp. Res. C, Emerg. Technol., 2010, 18, (5), pp. 821840.
    10. 10)
      • 10. Wu, S., Yang, Z., Zhu, X., et al: ‘Improved k-NN for short-term traffic forecasting using temporal and spatial information’, J. Transp. Eng., 2014, 140, (7), pp. 4660.
    11. 11)
      • 11. Stathopoulos, A., Karlaftis, M.G.: ‘A multivariate state-space approach for urban traffic flow modeling and prediction’, Transp. Res. C, Emerg. Technol., 2003, 11, (2), pp. 121135.
    12. 12)
      • 12. Turochy, R.: ‘Enhancing short-term traffic forecasting with traffic condition information’, J. Transp. Eng., 2006, 132, (6), pp. 469474.
    13. 13)
      • 13. Zou, N., Wang, J., Chang, G.L., et al: ‘Field test of a travel-time prediction system with widely spaced detectors transportation research record’, J. Transp. Res. Rec. Board, 2009, 2129, (1), pp. 6272.
    14. 14)
      • 14. Wang, J., Shang, P., Zhao, X.: ‘A new traffic speed forecasting method based on bi-pattern recognition’, Fluct. Noise Lett., 2011, 10, (1), pp. 5975.
    15. 15)
      • 15. Oh, C., Park, S.: ‘Investigating the effects of daily travel time patterns on short-term prediction’, Korean Soc. Civ. Eng. J. Civ. Eng., 2011, 15, (7), pp. 12631272.
    16. 16)
      • 16. Cai, P., Wang, Y., Lu, G., et al: ‘A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting’, Transp. Res. C, Emerg. Technol., 2016, 62, pp. 2134.
    17. 17)
      • 17. Li, L., Su, X., Wang, Y., et al: ‘Robust causal dependence mining in big data network and its application to traffic flow predictions’, Transp. Res. C, Emerg. Technol., 2015, 58, pp. 292307.
    18. 18)
      • 18. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: a deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, pp. 865873.
    19. 19)
      • 19. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Short-term speed predictions exploiting big data on large urban road networks’, Transp. Res. C, Emerg. Technol., 2016, 73, pp. 183201.
    20. 20)
      • 20. Fusco, G., Colombaroni, C., Isaenko, N.: ‘Comparative analysis of implicit models for real-time short-term traffic predictions’, IET Intell. Transp. Syst., 2016, 10, (4), pp. 270278.
    21. 21)
      • 21. Griffith, D.A.: ‘Modeling spatio-temporal relationships: retrospect and prospect’, J. Geogr. Syst., 2010, 12, (2), pp. 111123.
    22. 22)
      • 22. Kamarianakis, Y., Prastacos, P.: ‘Space–time modeling of traffic flow’, Comput. Geosci., 2005, 31, (2), pp. 119133.
    23. 23)
      • 23. Mai, T., Ghosh, B., Wilson, S.: ‘Short-term traffic-flow forecasting with auto-regressive moving average models’. Proc. the Inst. Civil Eng. Transp., 2015, 167, (4), pp. 232239.
    24. 24)
      • 24. Zou, Y., Zhu, X., Zhang, Y., et al: ‘A space–time diurnal method for short-term freeway travel time prediction’, Transp. Res. C, Emerg. Technol., 2014, 43, pp. 3349.
    25. 25)
      • 25. Kohavi, R, John, G.H.: ‘Wrappers for feature subset selection’, Artif. Intell., 1997, 97, pp. 273324.
    26. 26)
      • 26. Hall, M.A., Smith, L.A.: ‘Feature subset selection: a correlation based filter approach’. Proc. Int. Conf. Neural Information Processing and Intelligent Information Systems, 1997, pp. 855888.
    27. 27)
      • 27. Jolliffe, T.: ‘Principal component analysis’. ACM Computing Surveys, 1986, pp. 147.
    28. 28)
      • 28. Calvo, B., Larrañaga, P., Lozano, J.A.: ‘Feature subset selection from positive and unlabelled examples’, Pattern Recognit. Lett., 2009, 30, pp. 10271036.
    29. 29)
      • 29. Uguz, H.: ‘A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm’, Knowl.-Based Syst., 2011, 24, pp. 10241032.
    30. 30)
      • 30. Rasyidi, M.A., Ryu, K.R.: ‘Short-term speed prediction on urban highways by ensemble learning with feature subset selection’. Proc. Int. Conf. Data Systems for Advanced Applications, 2014, PP. pp. 4660.
    31. 31)
      • 31. Pawlak, Z.: ‘Rough sets: theoretical aspects of reasoning about data’ (Kluwer Academic Publishing, Dordrecht, 1991).
    32. 32)
      • 32. Shannon, C.E.: ‘A mathematical theory of communication’, Bell Lab. Tech. J., 1948, 27, (4), pp. 623656.
    33. 33)
      • 33. Li, W.T.: ‘Mutual information functions versus correlation functions’, J. Stat. Phys., 1990, 60, pp. 823837.
    34. 34)
      • 34. Battiti, R.: ‘Using mutual information for selecting features in supervised neural net learning’, IEEE Trans. Neural Netw., 1994, 5, (4), pp. 537550.
    35. 35)
      • 35. Chow, T., Huang, D.: ‘Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information’, IEEE Trans. Neural Netw., 2005, 6, (1), pp. 213224.
    36. 36)
      • 36. Cheng, T., Haworth, J., Wang, J.: ‘Spatio-temporal autocorrelation of road network data’, J. Geogr. Syst., 2012, 14, (4), pp. 389413.
    37. 37)
      • 37. Sun, Z., Wang, Y., Pan, J.: ‘Short-term traffic flow forecasting based on clustering and feature selection’. Proc. Int. Conf. Neural Networks, Hong Kong, 2008, pp. 577583.
    38. 38)
      • 38. Hosseini, S.H., Moshiri, B., Rahimi-Kian, A., et al: ‘Short-term traffic flow forecasting by mutual information and artificial neural networks’. Proc. Int. Conf. Industrial Technology, Athens, 2012, pp. 11361141.
    39. 39)
      • 39. Hosseini, S.H., Moshiri, B., Rahimi-Kian, A., et al: ‘Traffic speed prediction using mutual information’. Proc. Canadian Conf. Electrical and Computer Engineering, Montreal, 2012, pp. 14.
    40. 40)
      • 40. Yang, S.: ‘On feature selection for traffic congestion prediction’, Transp. Res. C, Emerg. Technol., 2013, 26, pp. 160169.
    41. 41)
      • 41. Affonso, C., Sassi, R.J., Ferreira, R.P.: ‘Traffic flow breakdown prediction using feature reduction through rough-neuro fuzzy networks’. Proc. Int. Conf. neural networks, San Jose, CA, USA, 2011, pp. 19431947.
    42. 42)
      • 42. Vlahogianni, E.I., Karlaftis, M.G.: ‘Fuzzy-entropy neural network freeway incident duration modeling with single and competing uncertainties’, Comput.-Aided Civ. Infrastruct. Eng., 2013, 28, pp. 420433.
    43. 43)
      • 43. Dong, N., Huang, H., Zheng, L.: ‘Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects’, Accid. Anal. Prev., 2014, 82, pp. 192198.
    44. 44)
      • 44. Shiau, Y., Tsai, C., Hung, Y., et al: ‘The application of data mining technology to build a forecasting model for classification of road traffic accidents’, Math. Probl. Eng., 2015, 170635, pp. 18.
    45. 45)
      • 45. Chen, X., Wei, Z., Liu, X., et al: ‘Spatiotemporal variable and parameter selection using sparse hybrid genetic algorithm for traffic flow forecasting’, Int. J. Distrib. Sens. Netw., 2017, 13, (6), p. 1550147717713376.
    46. 46)
      • 46. Salvo, G., Amato, G., Zito, P.: ‘Bus speed estimation by neural networks to improve the automatic fleet management’, Eur. Transp., 2007, 51, (37), pp. 93104.
    47. 47)
      • 47. Poomrittigul, S., Pan-ngum, S., Phiu-Nual, K., et al: ‘Mean travel speed estimation using GPS data without ID number on inner city road’. Proc. Int. Conf. ITS Telecommunications, 2008, pp. 5661.
    48. 48)
      • 48. Ye, Q., Szeto, W.Y., Wong, S.C.: ‘Short-term traffic speed forecasting based on data recorded at irregular intervals’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (4), pp. 17271737.
    49. 49)
      • 49. Julio, N., Giesen, R., Lizana, P.: ‘Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms’, Res. Transp. Econ., 2016, 59, pp. 250257.
    50. 50)
      • 50. Yao, B., Chen, C., Cao, Q., et al: ‘Short-term traffic speed prediction for an urban corridor’, Comput.-Aided Civ. Infrastruct. Eng., 2017, 32, (2), pp. 154169.
    51. 51)
      • 51. Clark, S.: ‘Traffic prediction using multivariate nonparametric regression’, J. Transp. Eng., 2003, 129, (2), pp. 161168.
    52. 52)
      • 52. Richards, P.I.: ‘Shock waves on the highway’, Oper. Res., 1956, 4, (1), pp. 4251.
    53. 53)
      • 53. Yun, S., Namkoong, S., Rho, J., et al: ‘A performance evaluation of neural network models in traffic volume forecasting’, Math. Comput. Model., 1998, 27, (2), pp. 293310.
    54. 54)
      • 54. Vapnik, V., Lerner, A.: ‘Pattern recognition using generalized portrait method’, Autom. Remote Control, 1963, 24, pp. 774780.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0059
Loading

Related content

content/journals/10.1049/iet-its.2017.0059
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address