http://iet.metastore.ingenta.com
1887

access icon free Calibrating supply parameters of large-scale DTA models with surrogate-based optimisation

  • HTML
    162.025390625Kb
  • PDF
    2.223862648010254MB
  • XML
    155.71484375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-its/12/7/IET-ITS.2017.0010.html;jsessionid=356arkn3vqne5.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2017.0010&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Gentile, G., Meschini, L., Papola, N.: ‘Spillback congestion in dynamic traffic assignment: a macroscopic flow model with time-varying bottlenecks’, Transp. Res. B, Methodol., 2007, 41, (10), pp. 11141138.
    2. 2)
      • 2. Zhou, X., Mahmassani, H.S., Zhang, K.: ‘Dynamic micro-assignment modeling approach for integrated multimodal urban corridor management’, Transp. Res. C, Emerg. Technol., 2008, 16, (2), pp. 167186.
    3. 3)
      • 3. Yang, Q., Koutsopoulos, H., Ben-Akiva, M.: ‘Simulation laboratory for evaluating dynamic traffic management systems’, Transp. Res. Rec., J. Transp. Res. Board, 2000, 1710, pp. 122130.
    4. 4)
      • 4. Zhu, Z., Xiong, C., Chen, X., et al: ‘Integrating dynamic traffic assignment and agent-based travel behavior models for cumulative land development impact analysis’. Presented at the Seventh Int. Symp. Travel Demand Management, Tucson, Arizona, USA, 2015.
    5. 5)
      • 5. Gartner, N., Stamatiadis, C.: ‘Integration of dynamic traffic assignment with real-time traffic adaptive control system’, Transp. Res. Rec., J. Transp. Res. Board, 1998, 1644, pp. 150156.
    6. 6)
      • 6. Caliper.: ‘TransCAD user's guide’ (Caliper Cooperation, USA, 2005).
    7. 7)
      • 7. PTV. ‘VISUM 11 user manual’. Karlsruhe, Germany, 2009.
    8. 8)
      • 8. Ben-Akiva, M.: ‘Development of dynamic traffic assignment system for planning purposes: DynaMIT user's guide’, 2002.
    9. 9)
      • 9. Mahmassani, H.S., Sbayti, H., Zhou, X.: DYNASMART-P version 1.0 user's guide.Maryland Transportation Initiative, College Park, MD, 2004, p. 137.
    10. 10)
      • 10. Zhou, X., Taylor, J.: ‘DTALite: a queue-based mesoscopic traffic simulator for fast model evaluation and calibration’, Cogent Eng., 2014, 1, (1), p. 961345.
    11. 11)
      • 11. PTV.: ‘VISSIM user manual (version 4.51)’, 2008.
    12. 12)
      • 12. Behrisch, M., Bieker, L., Erdmann, J., et al: ‘SUMO – simulation of urban mobility: an overview’. Third Int. Conf. Advances in System Simulation Proc. SIMUL 2011, ThinkMind, Barcelona, Spain, 2011.
    13. 13)
      • 13. Caliper.: ‘TransModeler traffic simulation software – version 2.5 user's guide’, 2009.
    14. 14)
      • 14. Cascetta, E., Nguyen, S.: ‘A unified framework for estimating or updating origin/destination matrices from traffic counts’, Transp. Res. B, Methodol., 1988, 22, (6), pp. 437455.
    15. 15)
      • 15. Cascetta, E., Inaudi, D., Marquis, G.: ‘Dynamic estimators of origin–destination matrices using traffic counts’, Transp. Sci., 1993, 27, (4), pp. 363373.
    16. 16)
      • 16. Tavana, H.: ‘Internally-consistent estimation of dynamic network origin–destination flows from intelligent transportation systems data using bi-level optimization’. Doctoral dissertation, the University of Texas at Austin, TX, 2001.
    17. 17)
      • 17. Zhou, X., Qin, X., Mahmassani, H.: ‘Dynamic origin–destination demand estimation with multiday link traffic counts for planning applications’, Transp. Res. Rec., J. Transp. Res. Board, 2003, 1831, pp. 3038.
    18. 18)
      • 18. Nie, Y.: ‘A variational inequality approach for inferring dynamic origin–destination travel demands’. Doctoral dissertation, University of California, Davis, CA, 2006.
    19. 19)
      • 19. Zhang, H., Nie, Y., Qian, Z.: ‘Estimating time-dependent freeway origin–destination demands with different data coverage: sensitivity analysis’, Transp. Res. Rec., J. Transp. Res. Board, 2008, 2047, pp. 9199.
    20. 20)
      • 20. Kim, H., Baek, S., Lim, Y.: ‘Origin–destination matrices estimated with a genetic algorithm from link traffic counts’, Transp. Res. Rec., J. Transp. Res. Board, 2001, 1771, pp. 156163.
    21. 21)
      • 21. Kattan, L., Abdulhai, B.: ‘Noniterative approach to dynamic traffic origin–destination estimation with parallel evolutionary algorithms’, Transp. Res. Rec., J. Transp. Res. Board, 2006, 1964, pp. 201210.
    22. 22)
      • 22. Stathopoulos, A., Tsekeris, T.: ‘Hybrid meta-heuristic algorithm for the simultaneous optimization of the O–D trip matrix estimation’, Comput.-Aided Civ. Infrastruct. Eng., 2004, 19, (6), pp. 421435.
    23. 23)
      • 23. Cipriani, E., Florian, M., Mahut, M., et al: ‘A gradient approximation approach for adjusting temporal origin–destination matrices’, Transp. Res. C, Emerg. Technol., 2011, 19, (2), pp. 270282.
    24. 24)
      • 24. He, X.: ‘Simulation-based optimization of transportation systems: theory, surrogate models, and applications’. Doctoral dissertation, University of Maryland, College Park, MD, 2014.
    25. 25)
      • 25. Omrani, R., Kattan, L.: ‘Demand and supply calibration of dynamic traffic assignment models: past efforts and future challenges’, Transp. Res. Rec., J. Transp. Res. Board, 2012, 2283, pp. 100112.
    26. 26)
      • 26. Verbas, İ, Mahmassani, H., Zhang, K.: ‘Time-dependent origin–destination demand estimation: challenges and methods for large-scale networks with multiple vehicle classes’, Transp. Res. Rec., J. Transp. Res. Board, 2011, 2263, pp. 4556.
    27. 27)
      • 27. Cantelmo, G., Cipriani, E., Gemma, A., et al: ‘An adaptive bi-level gradient procedure for the estimation of dynamic traffic demand’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (3), pp. 13481361.
    28. 28)
      • 28. Cantelmo, G., Viti, F., Cipriani, E., et al: ‘A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration’, Transp. Res. Procedia, 2017, 23, pp. 440459.
    29. 29)
      • 29. Tavana, H., Mahmassani, H.: ‘Estimation and application of dynamic speed-density relations by using transfer function models’, Transp. Res. Rec., J. Transp. Res. Board, 2000, 1710, pp. 4757.
    30. 30)
      • 30. Chiu, Y.C., Zhou, L., Song, H.: ‘Development and calibration of the anisotropic mesoscopic simulation model for uninterrupted flow facilities’, Transp. Res. B, Methodol., 2010, 44, (1), pp. 152174.
    31. 31)
      • 31. Doan, D.L., Ziliaskopoulos, A., Mahmassani, H.: ‘On-line monitoring system for real-time traffic management applications’, Transp. Res. Rec., J. Transp. Res. Board, 1998, 1678, pp. 142149.
    32. 32)
      • 32. Hawas, Y.E.: ‘Calibrating simulation models for advanced traveler information systems/advanced traffic management systems applications’, J. Transp. Eng., 2002, 128, (1), pp. 8088.
    33. 33)
      • 33. Chen, Y., Van Zuylen, H.J., Lee, R.: ‘Developing a large-scale urban decision support system’, Control in Transp. Syst., 2006, 11, (1), pp. 216221.
    34. 34)
      • 34. Balakrishna, R., Koutsopoulos, H.N., Ben-Akiva, M.: ‘Calibration and validation of dynamic traffic assignment systems. Transportation and traffic theory: flow, dynamics and human interaction’. Proc. 16th Int. Symp. Transportation and Traffic Theory, University of Maryland, College Park, 2005, pp. 407426.
    35. 35)
      • 35. Kundé, K.K.: ‘Calibration of mesoscopic traffic simulation models for dynamic traffic assignment’. Doctoral dissertation, Massachusetts Institute of Technology, 2002.
    36. 36)
      • 36. Antoniou, C., Ben-Akiva, M., Koutsopoulos, H.: ‘Online calibration of traffic prediction models’, Transp. Res. Rec., J. Transp. Res. Board, 2005, 1934, pp. 235245.
    37. 37)
      • 37. Balakrishna, R., Koutsopoulos, H.N., Ben-Akiva, M.: ‘Simultaneous off-line demand and supply calibration of dynamic traffic assignment systems’. Presented at 85th Annual Meeting of the Transportation Research Board, Washington, D.C, USA., 2006.
    38. 38)
      • 38. Balakrishna, R., Ben-Akiva, M., Koutsopoulos, H.: ‘Offline calibration of dynamic traffic assignment: simultaneous demand-and-supply estimation’, Transp. Res. Rec., J. Transp. Res. Board, 2007, 2003, pp. 5058.
    39. 39)
      • 39. Vaze, V., Antoniou, C., Wen, Y., et al: ‘Calibration of dynamic traffic assignment models with point-to-point traffic surveillance’, Transp. Res. Rec., J. Transp. Res. Board, 2009, 2090, pp. 19.
    40. 40)
      • 40. Qin, X., Mahmassani, H.: ‘Adaptive calibration of dynamic speed–density relations for online network traffic estimation and prediction applications’, Transp. Res. Rec., J. Transp. Res. Board, 2004, 1876, pp. 8289.
    41. 41)
      • 41. Wang, Y., Papageorgiou, M.: ‘Real-time freeway traffic state estimation based on extended Kalman filter: a general approach’, Transp. Res. B, Methodol., 2005, 39, (2), pp. 141167.
    42. 42)
      • 42. Ashok, K., Ben-Akiva, M.: ‘Dynamic O–D matrix estimation and prediction for real-time traffic management systems’, in Daganzo, C. (Ed.), ‘Transportation and traffic theory’ (Elsevier Science Publishing, California, USA, 1993), pp. 465484.
    43. 43)
      • 43. Ashok, K.: ‘Estimation and prediction of time-dependent origin–destination flows’. PhD dissertation, Massachusetts Institute of Technology, 1996.
    44. 44)
      • 44. Ashok, K., Ben-Akiva, M.: ‘Alternative approaches for real-time estimation and prediction of time-dependent origin–destination flows’, Transp. Sci., 2000, 34, (1), pp. 2136.
    45. 45)
      • 45. Zhou, X., Mahmassani, H.S.: ‘Recursive approaches for online consistency checking and OD demand updating for real-time dynamic traffic assignment operation’, Transp. Res. Rec., 2005, 1923, pp. 218226.
    46. 46)
      • 46. Antoniou, C., Ben-Akiva, M., Koutsopoulos, H.N.: ‘Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (4), pp. 661670.
    47. 47)
      • 47. Zhou, X., Mahmassani, H.S.: ‘A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework’, Transp. Res. B, Methodol., 2007, 41, (8), pp. 823840.
    48. 48)
      • 48. Hashemi, H., Abdelghany, K.F., Abdelghany, A.F.: ‘A multi-agent learning approach for online calibration and consistency checking of real-time traffic network management systems’, Transportmetrica B, Transp. Dyn., 2017, 5, (3), pp. 369389.
    49. 49)
      • 49. Barton, R.R., Meckesheimer, M.: ‘Metamodel-based simulation optimization’, Handb. Oper. Res. Manage. Sci., 2006, 13, pp. 535574.
    50. 50)
      • 50. Chen, X., Zhang, L., He, X., et al: ‘Surrogate-based optimization of expensive-to-evaluate objective for optimal highway toll charges in transportation network’, Comput.-Aided Civ. Infrastruct. Eng., 2014, 29, (5), pp. 359381.
    51. 51)
      • 51. Chen, X., Zhu, Z., He, X., et al: ‘Surrogate-based optimization for solving mixed integer network design problem’, Transp. Res. Rec., J. Transp. Res. Board, 2015, 2497, pp. 124134.
    52. 52)
      • 52. He, X., Chen, X., Xiong, C., et al: Integrated optimization of transportation demand management and traffic operations using simulation: a bootstrapped support vector regression method considering the statistical distribution of simulation noise. Presented at the 94th Annual Meeting of Transportation Research Board, Washington, D.C., USA, 2015.
    53. 53)
      • 53. He, X.: ‘Simulation-based optimization of transportation systems: theory, surrogate models, and applications’. Doctoral dissertation, University of Maryland, College Park, 2014.
    54. 54)
      • 54. Zhang, C., Osorio, C., Flötteröd, G.: ‘Efficient calibration techniques for large-scale traffic simulators’, Transp. Res. B, Methodol., 2017, 97, pp. 214239.
    55. 55)
      • 55. Chiu, Y.C., Bustillos, B.: ‘A gap function vehicle-based solution procedure for consistent and robust simulation-based dynamic traffic assignment (no. 09-3721)’, 2009.
    56. 56)
      • 56. Chiu, Y.C., Bottom, J., Mahut, M., et al: (2011). ‘Dynamic traffic assignment: a primer’. Transportation Research E-Circular E-C153.
    57. 57)
      • 57. Lu, C.C., Zhou, X., Zhang, K.: ‘Dynamic origin–destination demand flow estimation under congested traffic conditions’, Transp. Res. C, Emerg. Technol., 2013, 34, pp. 1637.
    58. 58)
      • 58. Hu, X., Chiu, Y.C., Villalobos, J.A., et al: ‘A sequential decomposition framework and method for calibrating dynamic origin–destination demand in a congested network’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (10), pp. 27902797.
    59. 59)
      • 59. Hussain, M., Barton, R., Joshi, S.: ‘Metamodeling: radial basis functions, versus polynomials’, Eur. J. Oper. Res., 2002, 138, (1), pp. 142154.
    60. 60)
      • 60. Jakobsson, S., Patriksson, M., Rudholm, J., et al: ‘A method for simulation-based optimization using radial basis functions’, Optim. Eng., 2010, 11, (4), pp. 501532.
    61. 61)
      • 61. Müller, J.: ‘MATSumoto: the MATLAB surrogate model toolbox for computationally expensive black-box global optimization problems’. 2014. arXiv preprint arXiv:1404.4261.
    62. 62)
      • 62. Xiong, C., Zhu, Z., He, X., et al: ‘Developing a 24 h large-scale microscopic traffic simulation model for the before-and-after study of a new tolled freeway in the Washington, D.C.–Baltimore region’, J. Transp. Eng., 2015, 141, (6), p. 05015001.
    63. 63)
      • 63. Zhu, Z., Xiong, C., Chen, X., et al: ‘Agent-based microsimulation approach for design and evaluation of flexible work schedules’, Transp. Res. Rec., J. Transp. Res. Board, 2015, 2537, pp. 167176.
    64. 64)
      • 64. Rasheed, K., Hirsh, H., Gelsey, A.: ‘A genetic algorithm for continuous design space search’, Artif. Intell. Eng., 1997, 11, (3), pp. 295305.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2017.0010
Loading

Related content

content/journals/10.1049/iet-its.2017.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address