http://iet.metastore.ingenta.com
1887

Calibration and validation of cellular automaton traffic flow model with empirical and experimental data

Calibration and validation of cellular automaton traffic flow model with empirical and experimental data

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For traffic flow models, calibration and validation are essential. Cellular automaton (CA) models are a special class of models, describing the movement of vehicles in discretised space and time. However, the previous work on calibration and validation does not discuss CA models systematically. This study calibrates and validates a stochastic CA model. The authors use a simple CA model, which only has two important parameters to be calibrated. The methodology for optimisation is to minimise the relative root mean square error between two properties: the averaged velocity and the variation of velocities in a platoon at a given density. Three different sites are used as cases to show the methodology, for which different types of data (video trajectories or GPS data) are available. The authors find that the best model parameters vary for the different locations. This may result from various driving strategies and potential tendencies. Thus, it is concluded that for CA models, various traffic flow phenomena need to be simulated by various parameters.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0275
Loading

Related content

content/journals/10.1049/iet-its.2016.0275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address