access icon free Circular particle fusion filter applied to map matching

Navigation in constrained areas such as ports or dense urban environments is often exposed to global navigation satellite system (GNSS) satellites masking caused by the infrastructures. In this case, the GNSS positioning is inaccurate or unavailable and proprioceptive sensors are generally used to temporarily localise the vehicle on a map. However, the drift of these sensors rapidly causes the navigation system to fail. In this study, the navigation is computed using magnetometer and GNSS observations defined in an absolute reference frame. The heading measurements are coupled with a digital map of the road network in order to localise the vehicle in a map matching process. The contribution of this study is the proposition of a particle filter that fuses the position and direction observations to estimate the vehicle position. In this context, when the GNSS signal is masked, the observations of direction are used to compute the vehicle position. The proposed filter is defined in both circular and linear domains in order to take into account the nature of the observations. The proposed approach is assessed on real and synthetic data.

Inspec keywords: intelligent transportation systems; road vehicles; cartography; particle filtering (numerical methods); satellite navigation; sensor fusion

Other keywords: circular particle fusion filter; road network; GNSS satellites; GNSS positioning; global navigation satellite system; map matching

Subjects: Geography and cartography computing; Filtering methods in signal processing; Interpolation and function approximation (numerical analysis); Traffic engineering computing; Sensor fusion; Interpolation and function approximation (numerical analysis); Radionavigation and direction finding

References

    1. 1)
      • 25. Davidson, P., Collin, J., Takala, J.: ‘Application of particle filters to a map-matching algorithm’, Gyroscopy Navig., 2011, 2, (4), p. 285.
    2. 2)
      • 28. Arulampalam, S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/Non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, pp. 174188.
    3. 3)
      • 22. Rabaoui, A., Viandier, N., Duflos, E., et al: ‘Dirichlet process mixtures for density estimation in dynamic nonlinear modeling: application to GPS positioning in urban canyons’, IEEE Trans. Signal Process., 2012, 60, (4), pp. 16381655.
    4. 4)
      • 17. Wu, Q., Gu, X., Luo, J., et al: ‘A vehicle map-matching algorithm based on measure fuzzy sorting’, J. Comput., 2014, 9, pp. 10581065.
    5. 5)
      • 7. Ren, M., Karimi, H.A.: ‘A fuzzy logic map matching for wheelchair navigation’, GPS Solut., 2012, 16, (3), pp. 273282, doi: 10.1007/s10291-011-0229-5.
    6. 6)
      • 4. Quddus, M., Washington, S.: ‘Shortest path and vehicle trajectory aided map-matching for low frequency GPS data’, Transp. Res. C, 2015, 55, pp. 328339.
    7. 7)
      • 12. Quddus, M.A., Ochieng, W.Y., Zhao, L., et al: ‘A general map matching algorithm for transport telematics applications’, GPS Solut., 2003, 7, (3), pp. 157167.
    8. 8)
      • 2. Lianxia, X., Quan, L., Minghua, L., et al: ‘Map matching algorithm and its application’. Proc. of the Int. Conf. on Intelligent Systems and Knowledge Engineering (ISKE), 2007.
    9. 9)
      • 18. Cossaboom, M., Georgy, J., Karamat, T., et al: ‘Augmented Kalman filter and map matching for 3D RISS/GPS integration for land vehicles’, Int. J. Navig. Observ., 2012, 2012, pp. 116.
    10. 10)
      • 8. Nassreddine, G., Abdallah, F., Denoeux, T.: ‘Map matching algorithm using belief function theory’. Proc. of the 11th Int. Conf. on Information Fusion (FUSION ‘08), 2008, pp. 9951002.
    11. 11)
      • 29. OpenStreetMap website. Available at http://www.openstreetmap.org.
    12. 12)
      • 19. Gustafsson, F., Gunnarsson, F., Bergman, N., et al: ‘Particle filters for positioning, navigation and tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 425437.
    13. 13)
      • 14. Haiqiang, Y., Shaowu, C., Huifu, J., et al: ‘An enhanced weight-based topological map matching algorithm for intricate urban road network’, Procedia – Soc. Behav. Sci., 2013, 96, pp. 16701678.
    14. 14)
      • 3. Wang, W., Jin, J., Ran, B., et al: ‘Integrated map matching algorithm for GPS-based freeway network traffic monitoring’. Transportation Research Board 89th Annual Meeting, 2010.
    15. 15)
      • 21. Giremus, A., Tourneret, J.Y., Calmettes, V.: ‘A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements’, IEEE Trans. Signal Process., 2007, 55, (4), pp. 12751285.
    16. 16)
      • 5. Quddus, M.A.: ‘High integrity map matching algorithms for advanced transport telematics applications’. Ph.D. dissertation, Imperial College, London, UK, 2006.
    17. 17)
      • 27. Jammalamadaka, S.R., SenGupta, A.: ‘Topics in circular statistics’ (World Scientific Publ., New Jersey, 2001).
    18. 18)
      • 11. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: ‘Current map-matching algorithms for transport applications: state-of-the art and future research directions’, Transp. Res. C: Emerg. Technol., 2007, 15, (5), pp. 312328.
    19. 19)
      • 15. Hashemi, M., Karimi, H.A.: ‘A critical review of real-time map-matching algorithms: Current issues and future directions’, Comput. Environ. Urban Syst., 2014, 48, pp. 153165.
    20. 20)
      • 24. Fouque, C., Bonnifait, P.: ‘Matching raw GPS measurements on a navigablemap without computing a global position’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 887898.
    21. 21)
      • 16. Smaili, C., El Badaoui El Najjar, M., Charpillet, F.: ‘A hybrid Bayesian framework for map matching: Formulation using switching Kalman filter’, J. Intell. Robot Syst., 2014, 74, pp. 725743.
    22. 22)
      • 20. Caron, F., Davy, M., Duflos, E., et al: ‘Particle filtering for multisensor data fusion with switching observation models: application to land vehicle positioning’, IEEE Trans. Signal Process., 2007, 55, (6), pp. 27032719.
    23. 23)
      • 6. Bierlaire, M., Chen, J., Newman, J.: ‘A probabilistic map matching method for smartphone GPS data’, Transp. Res. C, 2013, 26, pp. 7898.
    24. 24)
      • 13. Velaga, N.R., Quddus, M.A., Bristow, A.L.: ‘Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems’, Transp. Res. C: Emerg. Technol., 2009, 17, (6), pp. 672683.
    25. 25)
      • 23. Kuhnt, F., Kohlhaas, R., Jordan, R., et al: ‘Particle filter map matching and trajectory prediction using a spline based intersection model’. 17th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), Qingdao, 2014, pp. 18921893.
    26. 26)
      • 10. Parent, C., Spaccapietra, S., Renso, C., et al: ‘Semantic trajectories modeling and analysis’, ACM Comput. Surv., 2012, 45, (4), pp. 42:142:32.
    27. 27)
      • 1. Jimenez, F., Monzon, S., Naranjo, J.E.: ‘Definition of an enhanced map-matching algorithm for urban environments with poor GNSS signal quality’, Sensors, 2016, 16, p. 193.
    28. 28)
      • 9. Toledo-Moreo, R., Betaille, D., Peyret, F., et al: ‘Fusing GNSS, dead-reckoning, and enhanced maps for road vehicle lane-level navigation’, IEEE J. Sel. Top. Signal Process., 2009, 3, (5), pp. 798809.
    29. 29)
      • 26. Georgy, J., Noureldin, A., Goodall, C.: ‘Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration’, IEEE Trans. Consum. Electron., 2012, 58, (2), pp. 544552.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0231
Loading

Related content

content/journals/10.1049/iet-its.2016.0231
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading