access icon free LSTM network: a deep learning approach for short-term traffic forecast

Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis. The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers temporal–spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A comparison with other representative forecast models validates that the proposed LSTM network can achieve a better performance.

Inspec keywords: recurrent neural nets; learning (artificial intelligence); road traffic control; intelligent transportation systems

Other keywords: LSTM deep-learning approach; memory units; traffic management; departure time; travel routes; LSTM network; temporal-spatial correlation; intelligent transportation system; traffic data analysis; short-term traffic forecasting; travel modes; long-short-term memory network; computation power; two-dimensional network

Subjects: Knowledge engineering techniques; Neural computing techniques; Traffic engineering computing

References

    1. 1)
      • 33. Zhang, Y., Ye, Z.: ‘Short-term traffic flow forecasting using fuzzy logic system methods’, J. Intell. Transport. Syst., 2008, 12, (3), pp. 102112.
    2. 2)
      • 16. Williams, B.: ‘Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling’, Transport. Res. Record, 2001, 1776, pp. 194200.
    3. 3)
      • 7. Fei, X., Lu, C.C., Liu, K.: ‘A Bayesian dynamic linear model approach for real-time short-term freeway travel time rediction’, Transport. Res. C Emerging Technol., 2011, 19, (6), pp. 13061318.
    4. 4)
      • 6. Min, W., Wynter, L.: ‘Real-time road traffic prediction with spatio-temporal correlations’, Transport. Res. C Emerging Technol., 2011, 19, (4), pp. 606616.
    5. 5)
      • 37. Messer, C., Thomas Urbanik, I.I.: ‘Short-term freeway traffic volume forecasting using radial basis function neural network’, Transport. Res. Record, 1998, 1651, (1), pp. 3947.
    6. 6)
      • 42. Ma, X., Yu, H., Wang, Y., et al: ‘Large-scale transportation network congestion evolution prediction using deep learning theory’, PLoS One, 2015, 10, (3), , pp. 117.
    7. 7)
      • 22. Zhang, Y., Haghani, A.: ‘A gradient boosting method to improve travel time prediction’, Transport. Res. C Emerging Technol., 2015, 58, pp. 308324.
    8. 8)
      • 8. Nagel, K., Schreckenberg, M.: ‘A cellular automaton model for freeway traffic’, J. Phys. I, 1992, 2, (12), pp. 22212229.
    9. 9)
      • 34. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: ‘Short-term traffic forecasting: overview of objectives and methods’, Transport Rev., 2004, 24, (5), pp. 533557.
    10. 10)
      • 43. Ma, X., Tao, Z., Wang, Y., et al: ‘Long short-term memory neural network for traffic speed prediction using remote microwave sensor data’, Transport. Res. C Emerging Technol., 2015, 54, pp. 187197.
    11. 11)
      • 14. Van Der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transport. Res. C: Emerging Technol., 1996, 4, (5), pp. 307318.
    12. 12)
      • 3. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transport. Res. C Emerging Technol., 2014, 43, pp. 319.
    13. 13)
      • 10. Zhang, X., Rice, J.A.: ‘Short-term travel time prediction’, Transport. Res. C Emerging Technol., 2003, 11, (3), pp. 187210.
    14. 14)
      • 18. Karlaftis, M.G., Vlahogianni, E.I.: ‘Statistical methods versus neural networks in transportation research: Differences, similarities and some insights’, Transport. Res. C Emerging Technol., 2011, 19, (3), pp. 387399.
    15. 15)
      • 24. Zhu, J.Z., Cao, J.X., Zhu, Y.: ‘Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections’, Transport. Res. C Emerging Technol., 2014, 47, (2), pp. 139154.
    16. 16)
      • 5. Smith, B., Demetsky, M.: ‘Traffic flow forecasting: comparison of modeling approaches’, J. Transp. Eng., 1997, 123, (4), pp. 261266.
    17. 17)
      • 45. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    18. 18)
      • 31. Wang, J., Deng, W., Zhao, J.: ‘Short-term freeway traffic flow prediction based on improved Bayesian combined model’, J. Southeast Univ, 2012, 42, (1), pp. 162167.
    19. 19)
      • 38. Park, D., Rilett, L.R., Han, G.: ‘Spectral basis neural networks for real-time travel time forecasting’, J. Transp. Eng., 1999, 125, (125), pp. 515523.
    20. 20)
      • 23. Zou, Y., Hua, X., Zhang, Y., et al: ‘Hybrid short-term freeway speed prediction methods based on periodic analysis’, Can. J. Civ. Eng., 2015, 42, (8), pp. 570582.
    21. 21)
      • 17. Faraway, J.J.: ‘Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models’ (CRC press), vol. 124.
    22. 22)
      • 9. Li, L., Chen, X., Li, Z., et al: ‘Freeway travel-time estimation based on temporal–spatial queueing model’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 15361541.
    23. 23)
      • 19. Zhang, Y., Liu, Y.: ‘Traffic forecasting using least squares support vector machines’, Transportmetrica, 2009, 5, (3), pp. 193213.
    24. 24)
      • 2. Turochy, R.E.: ‘Enhancing short-term traffic forecasting with traffic condition information’, J. Transp. Eng., 2006, 132, (6), pp. 469474.
    25. 25)
      • 28. Li, S., Liu, L.J., Zhai, M.: ‘Prediction for short-term traffic flow based on modified PSO optimized BP neural network’, Syst. Eng. Theory Practice, 2012, 9, pp. 20452049.
    26. 26)
      • 41. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: A deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    27. 27)
      • 4. Farokhi Sadabadi, K., Hamedi, M., Haghani, A.: ‘Evaluating moving average techniques in short-term travel time prediction using an AVI data set’. Transportation Research Board 89th Annual Meeting, 2010.
    28. 28)
      • 27. Sun, S., Zhang, C., Yu, G.: ‘Bayesian network approach to traffic flow forecasting’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 124132.
    29. 29)
      • 40. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    30. 30)
      • 15. Lee, S., Fambro, D.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transport. Res. Record, 1999, 1678, pp. 179188.
    31. 31)
      • 1. Hu, T.Y.: ‘Evaluation framework for dynamic vehicle routing strategies under real-time information’, Transport. Res. Record, 2001, 1774, (−1), pp. 115122.
    32. 32)
      • 13. Ahmed, M.S., Cook, A.R.: ‘Analysis of freeway traffic time-series data by using Box-Jenkins techniques’. Transport. Res. Record, No. 722, 1979.
    33. 33)
      • 20. Okutani, I., Stephanedes, Y.J.: ‘Dynamic prediction of traffic volume through kalman filtering theory’, Transport. Res. B Methodol., 1984, 18, (1), pp. 111.
    34. 34)
      • 35. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transport. Syst., 2014, 15, (5), pp. 21912201.
    35. 35)
      • 39. Lingras, P., Sharma, S., Zhong, M.: ‘Prediction of recreational travel using genetically designed regression and time-delay neural network models’, Transport. Res. Record, 2002, 13, (1), pp. 435446.
    36. 36)
      • 21. Liu, H., Zuylen, H.J.V., Lint, H.V., et al: ‘Predicting urban arterial travel time with state-space neural networks and kalman filters’, Transport. Res. Record, 2006, 1968, pp. 99108.
    37. 37)
      • 12. Levin, M., Tsao, Y.D.: ‘On forecasting freeway occupancies and volumes (abridgment)’, Transport. Res. Record, 1980, 773, pp. 4749.
    38. 38)
      • 36. Park, D., Rilett, L.R.: ‘Forecasting freeway link travel times with a multilayer feedforward neural network’, Comput.-Aided Civ. Infrastruct. Eng., 1999, 14, (5), pp. 357367.
    39. 39)
      • 26. Innamaa, S.: ‘Self-adapting traffic flow status forecasts using clustering’, IET Intell. Transp. Syst., 2009, 3, (1), pp. 6776.01.
    40. 40)
      • 32. Xie, Y., Zhang, Y.: ‘A wavelet network model for short-term traffic volume forecasting’, J. Intell. Transport. Syst., 2006, 10, (3), pp. 141150.
    41. 41)
      • 25. Wu, C.H., Ho, J.M., Lee, D.T.: ‘Travel-time prediction with support vector regression’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (4), pp. 276281.
    42. 42)
      • 30. Li, Y.H., Liu, L.M., Wang, Y.Q.: ‘Short-term traffic flow prediction based on combination of predictive models’, J, Transport, Syst, Eng, Inf, Technol., 2013, 13, (2), pp. 3441.
    43. 43)
      • 46. Bengio, Y., Lamblin, P., Popovici, D., et al: ‘Greedy layer-wise training of deep networks’, Adv. Neural Inf. Process. Syst., 2007, 19, pp.153.
    44. 44)
      • 11. Wei, Y., Chen, M.C.: ‘Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks’, Transport. Res. C Emerging Technol., 2012, 21, (1), pp. 148162.
    45. 45)
      • 44. Graves, A., Mohamed, A., Hinton, G.: ‘Speech recognition with deep recurrent neural networks’. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 66456649.
    46. 46)
      • 29. Kuang, A.W., Huang, Z.X.: ‘Short-term traffic flow prediction based on RBF neural network’, Syst. Eng., 2004, 2, p. 012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0208
Loading

Related content

content/journals/10.1049/iet-its.2016.0208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading