http://iet.metastore.ingenta.com
1887

access icon free LSTM network: a deep learning approach for short-term traffic forecast

Loading full text...

Full text loading...

/deliver/fulltext/iet-its/11/2/IET-ITS.2016.0208.html;jsessionid=8motasmj2o0ak.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-its.2016.0208&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hu, T.Y.: ‘Evaluation framework for dynamic vehicle routing strategies under real-time information’, Transport. Res. Record, 2001, 1774, (−1), pp. 115122.
    2. 2)
      • 2. Turochy, R.E.: ‘Enhancing short-term traffic forecasting with traffic condition information’, J. Transp. Eng., 2006, 132, (6), pp. 469474.
    3. 3)
      • 3. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: ‘Short-term traffic forecasting: where we are and where we're going’, Transport. Res. C Emerging Technol., 2014, 43, pp. 319.
    4. 4)
      • 4. Farokhi Sadabadi, K., Hamedi, M., Haghani, A.: ‘Evaluating moving average techniques in short-term travel time prediction using an AVI data set’. Transportation Research Board 89th Annual Meeting, 2010.
    5. 5)
      • 5. Smith, B., Demetsky, M.: ‘Traffic flow forecasting: comparison of modeling approaches’, J. Transp. Eng., 1997, 123, (4), pp. 261266.
    6. 6)
      • 6. Min, W., Wynter, L.: ‘Real-time road traffic prediction with spatio-temporal correlations’, Transport. Res. C Emerging Technol., 2011, 19, (4), pp. 606616.
    7. 7)
      • 7. Fei, X., Lu, C.C., Liu, K.: ‘A Bayesian dynamic linear model approach for real-time short-term freeway travel time rediction’, Transport. Res. C Emerging Technol., 2011, 19, (6), pp. 13061318.
    8. 8)
      • 8. Nagel, K., Schreckenberg, M.: ‘A cellular automaton model for freeway traffic’, J. Phys. I, 1992, 2, (12), pp. 22212229.
    9. 9)
      • 9. Li, L., Chen, X., Li, Z., et al: ‘Freeway travel-time estimation based on temporal–spatial queueing model’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (3), pp. 15361541.
    10. 10)
      • 10. Zhang, X., Rice, J.A.: ‘Short-term travel time prediction’, Transport. Res. C Emerging Technol., 2003, 11, (3), pp. 187210.
    11. 11)
      • 11. Wei, Y., Chen, M.C.: ‘Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks’, Transport. Res. C Emerging Technol., 2012, 21, (1), pp. 148162.
    12. 12)
      • 12. Levin, M., Tsao, Y.D.: ‘On forecasting freeway occupancies and volumes (abridgment)’, Transport. Res. Record, 1980, 773, pp. 4749.
    13. 13)
      • 13. Ahmed, M.S., Cook, A.R.: ‘Analysis of freeway traffic time-series data by using Box-Jenkins techniques’. Transport. Res. Record, No. 722, 1979.
    14. 14)
      • 14. Van Der Voort, M., Dougherty, M., Watson, S.: ‘Combining Kohonen maps with ARIMA time series models to forecast traffic flow’, Transport. Res. C: Emerging Technol., 1996, 4, (5), pp. 307318.
    15. 15)
      • 15. Lee, S., Fambro, D.: ‘Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting’, Transport. Res. Record, 1999, 1678, pp. 179188.
    16. 16)
      • 16. Williams, B.: ‘Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling’, Transport. Res. Record, 2001, 1776, pp. 194200.
    17. 17)
      • 17. Faraway, J.J.: ‘Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models’ (CRC press), vol. 124.
    18. 18)
      • 18. Karlaftis, M.G., Vlahogianni, E.I.: ‘Statistical methods versus neural networks in transportation research: Differences, similarities and some insights’, Transport. Res. C Emerging Technol., 2011, 19, (3), pp. 387399.
    19. 19)
      • 19. Zhang, Y., Liu, Y.: ‘Traffic forecasting using least squares support vector machines’, Transportmetrica, 2009, 5, (3), pp. 193213.
    20. 20)
      • 20. Okutani, I., Stephanedes, Y.J.: ‘Dynamic prediction of traffic volume through kalman filtering theory’, Transport. Res. B Methodol., 1984, 18, (1), pp. 111.
    21. 21)
      • 21. Liu, H., Zuylen, H.J.V., Lint, H.V., et al: ‘Predicting urban arterial travel time with state-space neural networks and kalman filters’, Transport. Res. Record, 2006, 1968, pp. 99108.
    22. 22)
      • 22. Zhang, Y., Haghani, A.: ‘A gradient boosting method to improve travel time prediction’, Transport. Res. C Emerging Technol., 2015, 58, pp. 308324.
    23. 23)
      • 23. Zou, Y., Hua, X., Zhang, Y., et al: ‘Hybrid short-term freeway speed prediction methods based on periodic analysis’, Can. J. Civ. Eng., 2015, 42, (8), pp. 570582.
    24. 24)
      • 24. Zhu, J.Z., Cao, J.X., Zhu, Y.: ‘Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections’, Transport. Res. C Emerging Technol., 2014, 47, (2), pp. 139154.
    25. 25)
      • 25. Wu, C.H., Ho, J.M., Lee, D.T.: ‘Travel-time prediction with support vector regression’, IEEE Trans. Intell. Transp. Syst., 2004, 5, (4), pp. 276281.
    26. 26)
      • 26. Innamaa, S.: ‘Self-adapting traffic flow status forecasts using clustering’, IET Intell. Transp. Syst., 2009, 3, (1), pp. 6776.01.
    27. 27)
      • 27. Sun, S., Zhang, C., Yu, G.: ‘Bayesian network approach to traffic flow forecasting’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (1), pp. 124132.
    28. 28)
      • 28. Li, S., Liu, L.J., Zhai, M.: ‘Prediction for short-term traffic flow based on modified PSO optimized BP neural network’, Syst. Eng. Theory Practice, 2012, 9, pp. 20452049.
    29. 29)
      • 29. Kuang, A.W., Huang, Z.X.: ‘Short-term traffic flow prediction based on RBF neural network’, Syst. Eng., 2004, 2, p. 012.
    30. 30)
      • 30. Li, Y.H., Liu, L.M., Wang, Y.Q.: ‘Short-term traffic flow prediction based on combination of predictive models’, J, Transport, Syst, Eng, Inf, Technol., 2013, 13, (2), pp. 3441.
    31. 31)
      • 31. Wang, J., Deng, W., Zhao, J.: ‘Short-term freeway traffic flow prediction based on improved Bayesian combined model’, J. Southeast Univ, 2012, 42, (1), pp. 162167.
    32. 32)
      • 32. Xie, Y., Zhang, Y.: ‘A wavelet network model for short-term traffic volume forecasting’, J. Intell. Transport. Syst., 2006, 10, (3), pp. 141150.
    33. 33)
      • 33. Zhang, Y., Ye, Z.: ‘Short-term traffic flow forecasting using fuzzy logic system methods’, J. Intell. Transport. Syst., 2008, 12, (3), pp. 102112.
    34. 34)
      • 34. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: ‘Short-term traffic forecasting: overview of objectives and methods’, Transport Rev., 2004, 24, (5), pp. 533557.
    35. 35)
      • 35. Huang, W., Song, G., Hong, H., et al: ‘Deep architecture for traffic flow prediction: deep belief networks with multitask learning’, IEEE Trans. Intell. Transport. Syst., 2014, 15, (5), pp. 21912201.
    36. 36)
      • 36. Park, D., Rilett, L.R.: ‘Forecasting freeway link travel times with a multilayer feedforward neural network’, Comput.-Aided Civ. Infrastruct. Eng., 1999, 14, (5), pp. 357367.
    37. 37)
      • 37. Messer, C., Thomas Urbanik, I.I.: ‘Short-term freeway traffic volume forecasting using radial basis function neural network’, Transport. Res. Record, 1998, 1651, (1), pp. 3947.
    38. 38)
      • 38. Park, D., Rilett, L.R., Han, G.: ‘Spectral basis neural networks for real-time travel time forecasting’, J. Transp. Eng., 1999, 125, (125), pp. 515523.
    39. 39)
      • 39. Lingras, P., Sharma, S., Zhong, M.: ‘Prediction of recreational travel using genetically designed regression and time-delay neural network models’, Transport. Res. Record, 2002, 13, (1), pp. 435446.
    40. 40)
      • 40. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    41. 41)
      • 41. Lv, Y., Duan, Y., Kang, W., et al: ‘Traffic flow prediction with big data: A deep learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865873.
    42. 42)
      • 42. Ma, X., Yu, H., Wang, Y., et al: ‘Large-scale transportation network congestion evolution prediction using deep learning theory’, PLoS One, 2015, 10, (3), , pp. 117.
    43. 43)
      • 43. Ma, X., Tao, Z., Wang, Y., et al: ‘Long short-term memory neural network for traffic speed prediction using remote microwave sensor data’, Transport. Res. C Emerging Technol., 2015, 54, pp. 187197.
    44. 44)
      • 44. Graves, A., Mohamed, A., Hinton, G.: ‘Speech recognition with deep recurrent neural networks’. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 66456649.
    45. 45)
      • 45. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    46. 46)
      • 46. Bengio, Y., Lamblin, P., Popovici, D., et al: ‘Greedy layer-wise training of deep networks’, Adv. Neural Inf. Process. Syst., 2007, 19, pp.153.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0208
Loading

Related content

content/journals/10.1049/iet-its.2016.0208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address