access icon free Study and implementation of the LED headlight driver with auto-start function in specific location

Conventional automatic headlight devices determine whether to switch vehicle headlights on or off according to the brightness of the environment. These devices cannot automatically switch on headlights during daytime unless the headlights are required in specific road conditions (e.g. mountainous or foggy areas), thus compromising the safety of road users and drivers. This study develops a light-emitting diode (LED) headlight system that integrates the global positioning system (GPS) and a controller area network (CAN) bus communication interface. This system uses the GPS system to analyse the geographic location and then determines whether to switch on the LED headlight. To reduce the system complexity, a CAN bus is used to limit the number of control wires required. The LED headlight driver also uses an interleaved boost converter that has low conduction losses and input ripple currents, which improves the conversion efficiency of the headlight drivers and extends the battery lifetime. The feasibility of the proposed technology is verified using experimental results.

Inspec keywords: controller area networks; automotive electronics; lighting control; field buses; road vehicles; geographic information systems; driver circuits; LED lamps; power convertors; road safety; Global Positioning System

Other keywords: light-emitting diode headlight system; driver safety; geographic location analysis; battery lifetime; road users safety; vehicle headlights; interleaved boost converter; control wires; automatic headlight devices; environment brightness; road conditions; CAN bus communication interface; LED headlight driver; input ripple currents; controller area network; GPS system; system complexity reduction; conversion efficiency improvement; global positioning system; autostart function; conduction losses

Subjects: Automobile electronics and electrics; Geography and cartography computing; Instrumentation buses; Control engineering computing; Power electronics, supply and supervisory circuits; Light sources; Road-traffic system control; Light emitting diodes; Radionavigation and direction finding; Instrumentation buses and protocols

References

    1. 1)
      • 17. Huang, C.-C., Liu, Y.-C., Pan, T.-F., et al: ‘Study on an interleaved buck power factor corrector with GaNFET and integrated inductor’. 2013 First Int. Future Energy Electronics Conf. (IFEEC), November 2013, pp. 3035.
    2. 2)
      • 7. Rubio, J.C., Serrat, J., Lopez, A.M., et al: ‘Multiple-target tracking for intelligent headlights control’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 594605.
    3. 3)
      • 15. Cheng, S., Lo, Y., Chiu, H., et al: ‘High efficiency digital controlled interleaved power converter for high power PEM fuel cell applications’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 773780.
    4. 4)
      • 5. Schadel, C., Falb, D.: ‘SmartBeam – a high-beam assist’. Proc. of the Seventh Int. Symp. on Automotive Lighting, Darmstadt, Germany, 2007.
    5. 5)
      • 9. Hsieh, Y.-C., Moo, C.-S., Tsai, T.-J., et al: ‘High-frequency discharging characteristics of LiFePO4 battery’. Proc. of the 2011 ICIEA, Int. Conf. on Industrial Electronics and Applications, June 2011, pp. 953957.
    6. 6)
      • 10. Chen, Y.-L., Wu, B.-F., Huang, H.-Y., et al: ‘A real-time vision system for nighttime vehicle detection and traffic surveillance’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 20302044.
    7. 7)
      • 14. Gu, Y., Zhang, D.: ‘Interleaved boost converter with ripple cancellation network’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 38603868.
    8. 8)
      • 12. Chiu, H.-J., Lo, Y.-K., Chen, J.-T., et al: ‘A high-efficiency dimmable LED driver for low-power lighting applications’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 735743.
    9. 9)
      • 26. Hauke, B.: ‘Basic calculation of a boost converter's power stage (Rev. C)’. Appl. Report, 2014.
    10. 10)
      • 19. Hu, S.-Y., Wey, T.-S., Lin, M.-H., et al: ‘A simplified design of E-call embedded system using GPS’. Proc. of the 2011 IBICA, Int. Conf. on Innovations in Bio-inspired Computing and Applications, December 2011, pp. 237240.
    11. 11)
      • 1. Alexander, G.J., Lunenfeld, H.: ‘A users’ guide to positive guidance, third ed.’. Report No. FHWA-SA-90-017, U.S. Department of Transportation, Federal Highway Administration, Washington, DC, pp. 139.
    12. 12)
      • 22. Ho, C.N.-M., Breuninger, H., Pettersson, S., et al: ‘Practical design and implementation procedure of an interleaved boost converter using SIC diodes for PV applications’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 28352845.
    13. 13)
      • 13. Chiu, H.-J., Cheng, S.-J.: ‘LED backlight driving system for large-scale LCD panels’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 27512760.
    14. 14)
      • 20. Jovanovic, M.M., Jang, Y.: ‘State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications—an overview’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 701708.
    15. 15)
      • 6. Zhang, W., Wu, Q.M.J., Wang, G., et al: ‘Tracking and pairing vehicle headlight in night scenes’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (1), pp. 140153.
    16. 16)
      • 18. Chen, P., Lo, Y.-K., Chiu, K.-C., et al: ‘Intelligent high efficiency controller for 2 k Winterleaved series resonant converters’. Power Electronics and Drive Systems (PEDS), 2013, April 2013, pp. 423426.
    17. 17)
      • 4. Börnchen, T., Lachmayer, R., Wallaschek, J.: ‘Methods and tools for the design of novel multi-functional automotive lighting’. Proc. of the 1999 IEEE/ASME, Int. Conf. on Advanced Intelligent Mechatronics, Atlanta, 1999, pp. 819825.
    18. 18)
      • 2. Hacibekir, T., Karaman, S., Kural, E., et al: ‘Adaptive headlight system design using hardware-in-the-loop simulation’. Computer Aided Control System Design, 2006 IEEE Int. Conf. on Control Applications, 2006 IEEE Int. Symp. on Intelligent Control, 2006, 2006, pp. 915920.
    19. 19)
      • 8. López, A., Hilgenstock, J., Busse, A., et al: ‘Nighttime vehicle detection for intelligent headlight control’, Adv. Concepts Intell. Vis. Syst., 2008, 5259, pp. 113124.
    20. 20)
      • 21. Lin, Y.-S., Hu, K.-W., Yeh, T.-H., et al: ‘An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44934504.
    21. 21)
      • 24. Nussbaumer, T., Raggl, K., Kolar, J.W.: ‘Design guidelines for interleaved single-phase boost PFC circuits’, IEEE Trans. Power Electron., 2009, 56, (7), pp. 25592573.
    22. 22)
      • 25. Crews, R.: ‘LM5032 interleaved boost converter’. Appl. Report, 2013.
    23. 23)
      • 16. Lo, Y.-K., Kao, T.-S., Lin, J.-Y.: ‘Analysis and design of an interleaved active-clamping forward converter’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 23232332.
    24. 24)
      • 23. Zhou, L.W., Zhu, B.X., Luo, Q.M., et al: ‘Interleaved non-isolated high step-up DC/DC converter based on the diode–capacitor multiplier’, IET Power Electron., 2014, 7, (2), pp. 390397.
    25. 25)
      • 3. Su, P., Tang, B., Liu, T.: ‘Research on countryside highway traffic safety evaluation method in the mountains’, China Foreign Highw., 2010, 5, pp. 320324.
    26. 26)
      • 11. Benini, L., Bruni, D., Macii, A., et al: ‘Discharge current steering for battery lifetime optimization’, IEEE Trans. Comput., 2003, 52, (8), pp. 985995.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0072
Loading

Related content

content/journals/10.1049/iet-its.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading