http://iet.metastore.ingenta.com
1887

Study and implementation of the LED headlight driver with auto-start function in specific location

Study and implementation of the LED headlight driver with auto-start function in specific location

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Conventional automatic headlight devices determine whether to switch vehicle headlights on or off according to the brightness of the environment. These devices cannot automatically switch on headlights during daytime unless the headlights are required in specific road conditions (e.g. mountainous or foggy areas), thus compromising the safety of road users and drivers. This study develops a light-emitting diode (LED) headlight system that integrates the global positioning system (GPS) and a controller area network (CAN) bus communication interface. This system uses the GPS system to analyse the geographic location and then determines whether to switch on the LED headlight. To reduce the system complexity, a CAN bus is used to limit the number of control wires required. The LED headlight driver also uses an interleaved boost converter that has low conduction losses and input ripple currents, which improves the conversion efficiency of the headlight drivers and extends the battery lifetime. The feasibility of the proposed technology is verified using experimental results.

References

    1. 1)
      • 1. Alexander, G.J., Lunenfeld, H.: ‘A users’ guide to positive guidance, third ed.’. Report No. FHWA-SA-90-017, U.S. Department of Transportation, Federal Highway Administration, Washington, DC, pp. 139.
    2. 2)
      • 2. Hacibekir, T., Karaman, S., Kural, E., et al: ‘Adaptive headlight system design using hardware-in-the-loop simulation’. Computer Aided Control System Design, 2006 IEEE Int. Conf. on Control Applications, 2006 IEEE Int. Symp. on Intelligent Control, 2006, 2006, pp. 915920.
    3. 3)
      • 3. Su, P., Tang, B., Liu, T.: ‘Research on countryside highway traffic safety evaluation method in the mountains’, China Foreign Highw., 2010, 5, pp. 320324.
    4. 4)
      • 4. Börnchen, T., Lachmayer, R., Wallaschek, J.: ‘Methods and tools for the design of novel multi-functional automotive lighting’. Proc. of the 1999 IEEE/ASME, Int. Conf. on Advanced Intelligent Mechatronics, Atlanta, 1999, pp. 819825.
    5. 5)
      • 5. Schadel, C., Falb, D.: ‘SmartBeam – a high-beam assist’. Proc. of the Seventh Int. Symp. on Automotive Lighting, Darmstadt, Germany, 2007.
    6. 6)
      • 6. Zhang, W., Wu, Q.M.J., Wang, G., et al: ‘Tracking and pairing vehicle headlight in night scenes’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (1), pp. 140153.
    7. 7)
      • 7. Rubio, J.C., Serrat, J., Lopez, A.M., et al: ‘Multiple-target tracking for intelligent headlights control’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (2), pp. 594605.
    8. 8)
      • 8. López, A., Hilgenstock, J., Busse, A., et al: ‘Nighttime vehicle detection for intelligent headlight control’, Adv. Concepts Intell. Vis. Syst., 2008, 5259, pp. 113124.
    9. 9)
      • 9. Hsieh, Y.-C., Moo, C.-S., Tsai, T.-J., et al: ‘High-frequency discharging characteristics of LiFePO4 battery’. Proc. of the 2011 ICIEA, Int. Conf. on Industrial Electronics and Applications, June 2011, pp. 953957.
    10. 10)
      • 10. Chen, Y.-L., Wu, B.-F., Huang, H.-Y., et al: ‘A real-time vision system for nighttime vehicle detection and traffic surveillance’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 20302044.
    11. 11)
      • 11. Benini, L., Bruni, D., Macii, A., et al: ‘Discharge current steering for battery lifetime optimization’, IEEE Trans. Comput., 2003, 52, (8), pp. 985995.
    12. 12)
      • 12. Chiu, H.-J., Lo, Y.-K., Chen, J.-T., et al: ‘A high-efficiency dimmable LED driver for low-power lighting applications’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 735743.
    13. 13)
      • 13. Chiu, H.-J., Cheng, S.-J.: ‘LED backlight driving system for large-scale LCD panels’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 27512760.
    14. 14)
      • 14. Gu, Y., Zhang, D.: ‘Interleaved boost converter with ripple cancellation network’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 38603868.
    15. 15)
      • 15. Cheng, S., Lo, Y., Chiu, H., et al: ‘High efficiency digital controlled interleaved power converter for high power PEM fuel cell applications’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 773780.
    16. 16)
      • 16. Lo, Y.-K., Kao, T.-S., Lin, J.-Y.: ‘Analysis and design of an interleaved active-clamping forward converter’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 23232332.
    17. 17)
      • 17. Huang, C.-C., Liu, Y.-C., Pan, T.-F., et al: ‘Study on an interleaved buck power factor corrector with GaNFET and integrated inductor’. 2013 First Int. Future Energy Electronics Conf. (IFEEC), November 2013, pp. 3035.
    18. 18)
      • 18. Chen, P., Lo, Y.-K., Chiu, K.-C., et al: ‘Intelligent high efficiency controller for 2 k Winterleaved series resonant converters’. Power Electronics and Drive Systems (PEDS), 2013, April 2013, pp. 423426.
    19. 19)
      • 19. Hu, S.-Y., Wey, T.-S., Lin, M.-H., et al: ‘A simplified design of E-call embedded system using GPS’. Proc. of the 2011 IBICA, Int. Conf. on Innovations in Bio-inspired Computing and Applications, December 2011, pp. 237240.
    20. 20)
      • 20. Jovanovic, M.M., Jang, Y.: ‘State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications—an overview’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 701708.
    21. 21)
      • 21. Lin, Y.-S., Hu, K.-W., Yeh, T.-H., et al: ‘An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44934504.
    22. 22)
      • 22. Ho, C.N.-M., Breuninger, H., Pettersson, S., et al: ‘Practical design and implementation procedure of an interleaved boost converter using SIC diodes for PV applications’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 28352845.
    23. 23)
      • 23. Zhou, L.W., Zhu, B.X., Luo, Q.M., et al: ‘Interleaved non-isolated high step-up DC/DC converter based on the diode–capacitor multiplier’, IET Power Electron., 2014, 7, (2), pp. 390397.
    24. 24)
      • 24. Nussbaumer, T., Raggl, K., Kolar, J.W.: ‘Design guidelines for interleaved single-phase boost PFC circuits’, IEEE Trans. Power Electron., 2009, 56, (7), pp. 25592573.
    25. 25)
      • 25. Crews, R.: ‘LM5032 interleaved boost converter’. Appl. Report, 2013.
    26. 26)
      • 26. Hauke, B.: ‘Basic calculation of a boost converter's power stage (Rev. C)’. Appl. Report, 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2016.0072
Loading

Related content

content/journals/10.1049/iet-its.2016.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address