http://iet.metastore.ingenta.com
1887

A Gaussian mixture model and support vector machine approach to vehicle type and colour classification

A Gaussian mixture model and support vector machine approach to vehicle type and colour classification

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors describe their approach to segmenting moving road vehicles from the colour video data supplied by a stationary roadside closed-circuit television (CCTV) camera and classifying those vehicles in terms of type (car, van and heavy goods vehicle) and dominant colour. For the segmentation, the authors use a recursively updated Gaussian mixture model approach, with a multi-dimensional smoothing transform. The authors show that this transform improves the segmentation performance, particularly in adverse imaging conditions, such as when there is camera vibration. The authors then present a comprehensive comparative evaluation of shadow detection approaches, which is an essential component of background subtraction in outdoor scenes. For vehicle classification, a practical and systematic approach using a kernelised support vector machine is developed. The good recognition rates achieved in the authors’ experiments indicate that their approach is well suited for pragmatic vehicle classification applications.

References

    1. 1)
      • 1. Zivkovic, Z., Heijden, F.: ‘Efficient adaptive density estimation per image pixel for the task of background subtraction’, Pattern Recognit. Lett., 2006, 27, (7), pp. 773780 (doi: 10.1016/j.patrec.2005.11.005).
    2. 2)
      • 2. Wang, Y., Malinovskiy, Y., Wu, Y.: ‘Occlusion robust and environment insensitive algorithm for vehicle detection and tracking using surveillance video cameras’. Technical Report, TransNow Budget No. 61-6020, 2008.
    3. 3)
      • 3. Buch, N., Velastin, S., Orwell, J.: ‘A review of computer vision techniques for the analysis of urban traffic’, IEEE Trans. Intell. Transp. Syst., 2011, 99, pp. 120.
    4. 4)
      • 4. Nieto, M., Unzueta, L., Cortes, A., Barandiaran, J., Otaegui, O., Sanchez, P.: ‘Real-time 3d modeling of vehicles in low-cost monocamera systems’. Proc. Int. Conf. Computer Vision Theory and Applications VISAPP2011, 2011, pp. 459464.
    5. 5)
      • 5. Friedman, N., Russell, S.: ‘Image segmentation in video sequences: A probabilistic approach’. Proc 13th Conf. Uncertainty in Artificial Intelligence, 1997, pp. 175181.
    6. 6)
      • 6. Stauffer, C., Grimson, W.: ‘Learning patterns of activity using real-time tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 747757 (doi: 10.1109/34.868677).
    7. 7)
      • 7. Power, P., Schoonees, J.: ‘Understanding background mixture models for foreground segmentation’. Proc. Image and Vision Computing, New Zealand, 2002.
    8. 8)
      • 8. Lee, D.-S.: ‘Effective gaussian mixture learning for video background subtraction’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 827832 (doi: 10.1109/TPAMI.2005.102).
    9. 9)
      • 9. Martel-Brisson, N., Zaccarin, A.: ‘Learning and removing cast shadows through a multidistribution approach’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (7), pp. 11331146 (doi: 10.1109/TPAMI.2007.1039).
    10. 10)
      • 10. Johansson, B., Wiklund, J., Forssen, P.E., Granlund, G.: ‘Combining shadow detection and simulation for estimation of vehicle size and position’, Pattern Recognit. Lett., 2009, 30, (8), pp. 751759 (doi: 10.1016/j.patrec.2009.03.005).
    11. 11)
      • 11. Zang, W., Wu, Q.M.J., Yang, X., Fang, X.: ‘Multilevel framework to detect and handle vehicle occlusion’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 161174 (doi: 10.1109/TITS.2008.915647).
    12. 12)
      • 12. Wang, J., Ma, Y., Li, C., Wang, H., Liu, J.: ‘An efficient multi-object tracking method using multiple particle filters’. WRI World Congress on Computer science and Information Engineering, 2009, pp. 568572.
    13. 13)
      • 13. Prati, A., Mikic, I., Trivedi, M., Cucchiara, R.: ‘Detecting moving shadows: algorithms and evaluation’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (7), pp. 918923 (doi: 10.1109/TPAMI.2003.1206520).
    14. 14)
      • 14. Elgammal, A., Harwood, A., Davis, L.: ‘Non-parametric model for background subtraction’. Proc. Sixth European Conf. Computer Vision-Part II 1843, 2000 (LNCS), pp. 751767.
    15. 15)
      • 15. Finlayson, G., Hordley, S., Drew, M.: ‘Removing shadows from images’. European Conf. Computer Vision, 2002 (LNCS, 2353), no (4), pp. 823836.
    16. 16)
      • 16. Cucchiara, R., Piccardi, M., Prati, A.: ‘Detecting moving objects, ghosts and shadows in video streams’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (10), pp. 13371342 (doi: 10.1109/TPAMI.2003.1233909).
    17. 17)
      • 17. Baek, N., Park, S., Kim, K., Park, S.: ‘Vehicle color classification based on the support vector machine method’, ICIC, CCIS 2, 2007, 2, pp. 11331139.
    18. 18)
      • 18. Ambardekar, A., Nicolescu, M., Bebis, G.: ‘Efficient vehicle tracking and classification for an automated traffic surveillance system’, Proc. Signal Image Process., 2008.
    19. 19)
      • 19. Ma, X., Grimson, W.: ‘Edge-based rich representation for vehicle classification’. Int. Conf. Computer Vision, 2005, pp. 11851192.
    20. 20)
      • 20. Lowe, D.: ‘Distinctive image features from scale invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110 (doi: 10.1023/B:VISI.0000029664.99615.94).
    21. 21)
      • 21. Zhang, C., Chen, X., Chen, W.: ‘A pca-based vehicle classification framework’. Int. Conf. Data Engineering Workshops (ICDEW'06), 2006.
    22. 22)
      • 22. Vapnik, V., Chervonenkis, A.: ‘A note on one class of perceptrons’, Autom. Remote Control, 1964, 25, pp. 821837.
    23. 23)
      • 23. Vapnik, V., Lerner, A.: ‘Pattern recognition using generalized portrait method’, Autom. Remote Control, 1963, 24, pp. 774780.
    24. 24)
      • 24. Ortes, C., Vapnik, V.: ‘Support vector network’, Mach. Learn., 1995, 20, pp. 125.
    25. 25)
      • 25. Vapnik, V.: ‘Estimation of dependences based on empirical data’ (Springer, Berlin, 1982).
    26. 26)
      • 26. Vapnik, V.: ‘The nature of statistical learning theory’ (Springer, New York, 1995).
    27. 27)
      • 27. Vapnik, V.: ‘An overview of statistical learning theory’, IEEE Trans. Neural Netw., 1999, 10, (5), pp. 988999 (doi: 10.1109/72.788640).
    28. 28)
      • 28. Chapelle, O., Haffner, P., Vapnik, V.: ‘Support vector machines for histogram-based image classification’, IEEE Trans. Neural Netw., 1999, 10, (5), pp. 10551064 (doi: 10.1109/72.788646).
    29. 29)
      • 29. Blanz, V., Scholkopf, B., Bulthoff, H., Burges, C., Vapnik, V., Vetter, T.: ‘Comparison of view-based object recognition algorithms using realistic 3d models’, in: Von der Malsburg, C., Von Seelen, W., Vorbrüggen, J.C., Sendhoff, B., editors. ‘Artificial Neural Networks – ICANN'96’, (Springer, 1996), 1112, pp. 251256 (doi: 10.1007/3-540-61510-5_45).
    30. 30)
      • 30. Melgani, F., Bruzzone, L.: ‘Classification of hyperspectral remote sensing images with support vector machines’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (8), pp. 17781790 (doi: 10.1109/TGRS.2004.831865).
    31. 31)
      • 31. Scholkopf, B., Burges, C., Vapnik, V.: ‘Extracting support data for a given task’. Proc. First Int. Conf. Knowledge Discovering and data Mining, 1995, pp. 252257.
    32. 32)
      • 32. Jain, R., Kasturi, R., Schunck, B.: ‘Machine vision. McGraw-Hill series in Computer Science’ (McGraw-Hill, Inc., New York, NY, 1995).
    33. 33)
      • 33. Chen, Z., Husz, Z., Wallace, I., Wallace, A.: ‘Video object tracking based on a chamfer distance transform’. IEEE Int. Conf. Image Processing, San Antonio, Texas, USA, 2007, pp. 357360.
    34. 34)
      • 34. Comaniciu, D., Meer, P.: ‘Mean shift: A robust approach toward feature space analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 603619 (doi: 10.1109/34.1000236).
    35. 35)
      • 35. Horprasert, T., Harwood, D., Davis, L.: ‘A statistical approach for real-time robust background subtraction and shadow detection’. Proc. IEEE ICCV'99 Frame rate workshop, 1999.
    36. 36)
      • 36. Joachims, T.: ‘Training linear svms in linear time’. Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD'06), Philadelphia, Pennsylvania, USA, 2006, pp. 217226.
    37. 37)
      • 37. Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: ‘Svm and kernel methods matlab toolbox’, Perception Systems et Information, INSA de Rouen, Rouen, France, 2005. Available at http://asi.insa-rouen.fr/enseignants/arakoto/toolbox/index.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0104
Loading

Related content

content/journals/10.1049/iet-its.2012.0104
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address