access icon free On-line passenger estimation in a metro system using particle filter

Urban metro rail systems are subject to high and growing demand as the populations of major cities increase. A point may be reached where improving system management using advanced control is more attractive than expanding the network. Control schemes for strengthening system performance and therefore user satisfaction typically involve measuring certain system state variables such as the numbers of passengers aboard trains and waiting at stations. Given the high cost of installing the necessary sensors, an alternative methodology is proposed for online estimation of the two variables using a particle filter. Experiments performed on a dynamic simulator show that the variable values can be inferred by measuring only train dwell-times and passengers entering stations, data on which are generally accessible without major investment. The level of accuracy of the estimates generated by the methodology is high enough to enable a model-based controller implemented in a real metro system to achieve significant performance improvements.

Inspec keywords: railways; digital simulation; particle filtering (numerical methods)

Other keywords: model-based controller; particle filter; urban metro rail systems; train dwell-times; dynamic simulator; online passenger estimation

Subjects: Interpolation and function approximation (numerical analysis); Rail-traffic system control

References

    1. 1)
      • 6. Lin, P.-W., Chang, G.-L. : ‘A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix’, Transp. Res. B, Methodol., 2007, 41, (5), pp. 554572 (doi: 10.1016/j.trb.2006.09.004).
    2. 2)
      • 11. Gordon, N., Salmond, D., Smith, A.: ‘Novel approach to nonlinear/non-Gaussian Bayesian state estimation’, IEE Proc. F, Radar Signal Process., 1993, 140, (2), pp. 107113 (doi: 10.1049/ip-f-2.1993.0015).
    3. 3)
      • 4. Oberli, C., Torres-Torriti, M., Landau, D.: ‘Performance evaluation of uhf rfid technologies for real-time passenger recognition in intelligent public transportation systems’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (3), pp. 748753 (doi: 10.1109/TITS.2010.2048429).
    4. 4)
      • 5. Zhou, X., Mahmassani, H.S.: ‘Dynamic origin-destination demand estimation using multi-day link traffic counts for planning applications’, J. Transp. Res. Board, 2003, 1831, pp. 3038 (doi: 10.3141/1831-04).
    5. 5)
      • 13. Juloski, A., Weiland, S., Heemels, W.: ‘A Bayesian approach to identification of hybrid systems’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15201533 (doi: 10.1109/TAC.2005.856649).
    6. 6)
      • 10. Wilson, N.H.M., Lin, T.: ‘Dwell-time relationships for light rail systems’, Transp. Res. Rec., 1993, 1361, pp. 296304.
    7. 7)
      • 14. Rawlings, J.B., Bakshi, B.R.: ‘Particle filtering and moving horizon estimation’, Comput. Chem. Eng., 2006, 30, (10–12), pp. 15291541 (doi: 10.1016/j.compchemeng.2006.05.031).
    8. 8)
      • 15. Krause, A., Musingwini, C.: ‘Modelling open pit shovel-truck systems using the machine repair model’, J. South Afr. Inst. Min., 2007, 107, (8), pp. 469476.
    9. 9)
      • 8. Grube, P., Núñez, F., Cipriano, A.: ‘An event-driven simulator for multi-line metro systems and its application to Santiago de Chile metropolitan rail network’, Simul. Model. Pract. Theory, 2011, 19, (1), pp. 393405 (doi: 10.1016/j.simpat.2010.07.012).
    10. 10)
      • 16. Núñez, F., Cipriano, A.: ‘Model predictive control of multi-line metro systems: a distributed approach’. IEEE Int. Conf. Control and Automation, Santiago, Chile, 2011, pp. 532537.
    11. 11)
      • 1. Núñez, F., Reyes, F., Grube, P., Cipriano, A.: ‘Simulating railway and metropolitan rail networks: from planning to on-line control’, IEEE Intell. Transp. Syst. Mag., 2011, 2, (4), pp. 1830 (doi: 10.1109/MITS.2010.939923).
    12. 12)
      • 9. Paolucci, M., Pesenti, R.: ‘An object-oriented approach to discrete-event simulation applied to underground railway systems’, Simulation, 1999, 72, (6), pp. 372383 (doi: 10.1177/003754979907200601).
    13. 13)
      • 12. Doucet, A., Gordon, N., Krishnamurthy, V.: ‘Particle filters for state estimation of jump Markov linear systems’, IEEE Trans. Signal Process., 2001, 49, (3), pp. 613624 (doi: 10.1109/78.905890).
    14. 14)
      • 3. Grube, P., Cipriano, A.: ‘Comparison of simple and model predictive control strategies for the holding problem in a metro train system’, IET Intell. Transp. Syst., 2010, 4, (2), pp. 161175 (doi: 10.1049/iet-its.2009.0086).
    15. 15)
      • 7. Basile, F., Chiacchio, P., Teta, D.: ‘A hybrid model for real time simulation of urban traffic’, Control Eng. Pract., 2012, 20, (2), pp. 123137 (doi: 10.1016/j.conengprac.2011.10.002).
    16. 16)
      • 2. Delgado, F., Muñoz, J., Giesen, R., Cipriano, A.: ‘Real-time control of buses in a transit corridor based on vehicle holding and boarding limits’, Transp. Res. Rec., J. Transp. Res. Board, 2009, 2090, (1), pp. 5967 (doi: 10.3141/2090-07).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0057
Loading

Related content

content/journals/10.1049/iet-its.2012.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading