http://iet.metastore.ingenta.com
1887

Real-time estimation of travel speed using urban traffic information system and filtering algorithm

Real-time estimation of travel speed using urban traffic information system and filtering algorithm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Travel speed is an important parameter for measuring road traffic. urban traffic information system (UTIS) was developed as a mobile detector for measuring link travel speeds in South Korea. However, UTIS incur errors, such as those caused by irregular vehicle trajectories and communication delays. This study describes an algorithm developed for estimating reliable and accurate average roadway link travel speeds using UTIS data. The algorithm estimates link travel times using a robust data-filtering procedure to identify valid observations within a sampling interval using a varying data validity window. The size of the data validity window varies as a function of the standard deviation of observations in previous intervals. A field test showed that the variance of the percent errors of link travel times was reduced when measured using the new model. Therefore it can be concluded that the proposed model significantly improves travel speed measuring accuracy.

References

    1. 1)
      • 1. Bhaskar, A., Chung, E., Dumont, A.G.: ‘Estimation of travel time on urban networks with midlink sources and sinks’. Transp. Res. Rec. J. Transp. Res. Board, 2009, 2121, pp. 4154 (doi: 10.3141/2121-05).
    2. 2)
      • 2. Kothuri, S.M., Tufte, K.A., Fayed, E., Bertini, R.L.: ‘Toward understanding and reducing errors in real-time estimation of travel times’. Transp. Res. Rec. J. Transp. Res. Board, 2008, 2049, pp. 2128 (doi: 10.3141/2049-03).
    3. 3)
      • 3. Lint, V.: ‘Empirical evaluation of new robust travel time estimation algorithms’. Transp. Res. Rec. J. Transp. Res. Board, 2010, 2160, pp. 5059 (doi: 10.3141/2160-06).
    4. 4)
      • 4. Pu, W., Lin, J., Long, L.: ‘Real-time estimation of urban street segment travel time using buses as speed probes’. Transp. Res. Rec. J. Transp. Res. Board, 2009, 2129, pp. 8189 (doi: 10.3141/2129-10).
    5. 5)
      • 5. Wang, J., Sou, N., Chang, G.L.: ‘Travel time prediction’. Transp. Res. Rec. J. Transp. Res. Board, 2008, 2049, pp. 8191 (doi: 10.3141/2049-10).
    6. 6)
      • 6. Xu, H., Barth, M.: ‘Travel time estimation techniques for traffic information systems based on inter vehicle communications’. Transp. Res. Rec. J. Transp. Res. Board, 2006, 1944, pp. 7281 (doi: 10.3141/1944-10).
    7. 7)
      • 7. Fontaine, M.D., Smith, B.L., Hendricks, A.R., Scherer, W.T.: ‘Wireless location technology-based traffic monitoring’. Transp. Res. Rec. J. Transp. Res. Board, 2007, 1993, pp. 5158 (doi: 10.3141/1993-08).
    8. 8)
      • 8. Liu, Y., Dion, F., Biswas, S.: ‘Dedicated short-range wireless communications for intelligent transportation system applications’. Transp. Res. Rec. J. Transp. Res. Board, 2005, 1910, pp. 2937 (doi: 10.3141/1910-04).
    9. 9)
      • 9. Cohn, N.: ‘Real-time traffic information and navigation’. Transp. Res. Rec. J. Transp. Res. Board, 2009, 2129, pp. 129135 (doi: 10.3141/2129-15).
    10. 10)
      • 10. Böhm, M., Pfliegl, R., Frötsher, A.: ‘Wireless infrastructure-to-vehicle communication technologies to increase road safety along motorways’. Transp. Res. Rec. J. Transp. Res. Board, 2009, 2086, pp. 129135.
    11. 11)
      • 11. Zhou, Y., Chowdhury, M., Martin, J., Wang, K.C., Kang, X., Westall, J.M.: ‘Field performance study of a regional WiMAX network for intelligent transportation system applications’. Transp. Res. Rec. J. Transp. Res. Board, 2009, 2129, pp. 121128 (doi: 10.3141/2129-14).
    12. 12)
      • 12. Sugiura, A., Dermawan, C.: ‘In traffic jam IVC-RVC system for ITS using bluetooth’, IEEE Trans. Intell. Transp. Syst., 2005, 6, (3), pp. 302313 (doi: 10.1109/TITS.2005.853704).
    13. 13)
      • 13. Dion, F., Rakha, H.: ‘Estimating spatial travel times using automatic vehicle identification data’. Presented at 82nd Annual Meeting of the Transportation Research Board, Washington, D.C., 2003.
    14. 14)
      • 14. SwRI (1998): ‘Automatic vehicle identification model deployment initiative – system design document’. Report prepared for TransGuide, Texas Department of Transportation, Southwest Research Institute, San Antonio, TX, 1998.
    15. 15)
      • 15. Roess, R., Shane, W.Mc., Prassas, E.: ‘Traffic engineering’ (Prentice-Hall Press, New Jersey, 1998, 2nd edn.).
    16. 16)
      • 16. Ki, Y.K., Baik, D.K.: ‘Model for accurate speed measurement using double loop detectors’, IEEE Trans. Veh. Technol., 2006, 55, (4), pp. 10941101 (doi: 10.1109/TVT.2006.877462).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2012.0051
Loading

Related content

content/journals/10.1049/iet-its.2012.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address