Your browser does not support JavaScript!

On-line map-matching framework for floating car data with low sampling rate in urban road networks

On-line map-matching framework for floating car data with low sampling rate in urban road networks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The performance of map matching has a significant effect on obtaining real-time traffic information. The floating car data (FCD) is of low-sampling rate, and urban road networks such as multi-layer roads can be particularly complex. Most of the current low-sampling-rate map-matching approaches use a fixed time interval, which can result in a lack of efficiency and accuracy if the initial point is not correctly matched. Moreover, the issue of handling data relating to multi-layer road networks remains open. To address these issues, a new on-line map-matching framework is proposed, comprising the confidence point and the maximum delay constraint dynamic time window. The framework performs map matching by self-adaptively choosing the appropriate timing and matching method according to the complexity of the local network to which the positioning point belongs. To distinguish elevated roads from normal roads, vehicle behaviour patterns on elevated roads are taken into account. Comparisons of the proposed algorithm, hidden Markov model algorithm, incremental algorithm and point-to-curve algorithm are conducted on two datasets. The empirical results show that the proposed algorithm outperforms the other algorithms. When the behaviour pattern on elevated roads is considered, the accuracy of these algorithms is also improved.


    1. 1)
      • 14. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: ‘Map-matching for low-sampling-rate GPS trajectories’. Proc. Int. Conf. 17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, New York, USA, 2009, pp. 352361.
    2. 2)
      • 11. Marchal, F., Hackney, J., Axhausen, K.W.: ‘Efficient map matching of large global positioning system data sets: tests on speed-monitoring experiment in Zürich’, Transp. Res. Rec., J. Transp. Res. Board, 2005, 1935, (11), pp. 93100 (doi: 10.3141/1935-11).
    3. 3)
      • 5. White, C.E., Bernstein, D., Kornhauser, A.L.: ‘Some map matching algorithms for personal navigation assistants’, Transp. Res. C, Emerg. Technol., 2000, 8, (1–6), pp. 91108 (doi: 10.1016/S0968-090X(00)00026-7).
    4. 4)
      • 2. Greenfeld, J.S.: ‘Matching GPS observations to locations on a digital map’. Proc. Int. Conf. 81st Annual Meeting of the Transportation Research Board, Washington, USA, 2002. Available at
    5. 5)
      • 16. She, X., He, Z., Yang, W., Zheng, W., Sha, Z.: ‘On-line map-matching algorithm for long time interval floating car data’. Proc. Int. Conf. 11th Int. Conf. Chinese Transportation Professionals, Nanjing, China, 2011, pp. 14631473.
    6. 6)
      • 9. Velaga, N.R., Quddus, M.A., Bristow, A.L.: ‘Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems’, Transp. Res. C, Emerg. Technol., 2009, 17, (6), pp. 672683 (doi: 10.1016/j.trc.2009.05.008).
    7. 7)
      • 17. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: ‘On map-matching vehicle tracking data’. Proc. Int. Conf. 31st Int. Conf. Very large data bases, Trondheim, 2005, pp. 853864.
    8. 8)
      • 15. Newson, P., Krumm, J.: ‘Hidden Markov map matching through noise and sparseness’. Proc. Int. Conf. 17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems, New York, USA, 2009. pp. 336343.
    9. 9)
      • 18. Wu, D.D., Zhu, T., Lv, W., Gao, X.: ‘A heuristic map-matching algorithm by using vector-based recognition’. Proc. Int. Conf. Int. Multi-Conference on Computing in the Global Information Technology, Guadeloupe, 2007, pp. 18.
    10. 10)
      • 8. Quddus, M.A., Noland, R.B., Ochieng, W.Y.: ‘A high accuracy fuzzy logic based map matching algorithm for road transport’, J. Intell. Transp. Syst., 2006, 10, (3), pp. 103115 (doi: 10.1080/15472450600793560).
    11. 11)
      • 13. Wang, W., Jin, J., Ran, B., Guo, X.: ‘Large-scale freeway network traffic monitoring: a map-matching algorithm based on low-logging frequency GPS probe data’, J. Intell. Transp. Syst., 2011, 15, (2), pp. 6374 (doi: 10.1080/15472450.2011.570103).
    12. 12)
      • 10. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: ‘Current map-matching algorithms for transport applications: state-of-the art and future research directions’, Transp. Res. C, Emerg. Technol., 2007, 15, (5), pp. 312328 (doi: 10.1016/j.trc.2007.05.002).
    13. 13)
      • 19. Chawathe, S.S.: ‘Segment-based map matching’. Proc. Int. Conf. IEEE Symp. Intelligent Vehicles, Istanbul, 2007, pp. 11901197.
    14. 14)
      • 21. Syed, S., Cannon, M.E.: ‘Fuzzy logic-based map matching algorithm for vehicle navigation system in urban canyons’. Proc. Int. Conf. ION National Technical Meeting, San Diego, 2004, pp. 2628.
    15. 15)
      • 3. Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: ‘A general map matching algorithm for transport telematics applications’, GPS Solut., 2003, 7, (3), pp. 157167 (doi: 10.1007/s10291-003-0069-z).
    16. 16)
      • 7. Yang, D., Cai, B., Yuan, Y.: ‘An improved map-matching algorithm used in vehicle navigation system’. Proc. Int. Conf. IEEE Intelligent Transportation Systems, 2003, pp. 12461250.
    17. 17)
      • 6. Ochieng, W.Y., Quddus, M., Noland, R.B.: ‘Map-matching in complex urban road networks’, Braz. J. Cartography, 2003, 2, (55), pp. 118.
    18. 18)
      • 1. Brakatsoulas, S., Pfoser, D., Tryfona, N.: ‘Practical data management techniques for vehicle tracking data’. Proc. Int. Conf. 21st Int. Conf. Data Engineering, Washington, USA, 2005, pp. 324325.
    19. 19)
      • 22. Jiang, J., Han, G., Chen, J.: ‘Modelling turning restrictions in traffic networks for vehicle navigation system’, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2002, 34, (4), pp. 106110.
    20. 20)
      • 12. Pereira, F.C., Costa, H., Pereira, N.M.: ‘An off-line map-matching algorithm for incomplete map databases’, Eur. Transp. Res. Rev., 2009, 1, (3), pp. 107124 (doi: 10.1007/s12544-009-0013-6).
    21. 21)
      • 20. Yin, H., Wolfson, O.: ‘A weight-based map matching method in moving objects databases’. Proc. Int. Conf. 16th Int. Conf. Scientific and Statistical Database Management, Santorini Islan, 2004, pp. 437438.
    22. 22)
      • 4. Bernstein, D., Kornhauser, A.: ‘An introduction to map matching for personal navigation assistants’. Proc. Int. Conf. Transportation Research Board, 1998. Available at

Related content

This is a required field
Please enter a valid email address