Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences

Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Short-term prediction is one of the essential elements of intelligent transportation systems (ITS). Although fine prediction methodologies have been reported, most prediction methods with current time-series data lead to inefficient predictions when current or future time-series data either exhibit fluctuations or abruptly change. In order to deal with this problem, a dynamic multi-interval traffic volume prediction model, based on the k-nearest neighbour non-parametric regression (KNN-NPR), is introduced in this study. In an empirical study with real-world data, the input parameters of the proposed model including the k-values for the nearest neighbours in the neighbourhood and the dm-values for the number of lags were optimised according to the multi-interval prediction horizon in order to immediately capture the directionality of the future states and to minimise the prediction errors. The presented model performed effectively in terms of prediction accuracy, despite multi-interval schemes, to the same degree as applications of the real ITS, even if the time-series data abruptly varied or exhibited wide fluctuations. It can clearly be seen that the proposed methodology is one of the promising system-oriented approaches in the area of multi-interval traffic flow forecasting.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2011.0123
Loading

Related content

content/journals/10.1049/iet-its.2011.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address