http://iet.metastore.ingenta.com
1887

Limitations of positioning systems for developing digital maps and locating vehicles according to the specifications of future driver assistance systems

Limitations of positioning systems for developing digital maps and locating vehicles according to the specifications of future driver assistance systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Some advanced driver assistance systems require on-the-lane vehicle positioning on accurate digital maps. The combination of high precision global navigation satellite systems and inertial measurement is the most common technique to carry out this precise positioning since in some areas global positioning systems (GPS) signals are lost or degraded. However, real experimental validation of the navigation algorithms (beyond simulation) is one of the most important shortcomings in the state-of-the-art. In this study, a wide set of real experiments have been carried out on real roads, in urban and rural environments, using an instrumented car. A theoretical approach based on the uncertainty propagation law has been set out to evaluate the errors when using only inertial measurement systems and the maximum distance that can be travelled before exceeding the admissible error limits. Results show that it is better to correct GPS positioning when its signal is degraded than to wait until the signal is definitively lost. Furthermore, inertial measurement systems and GPS receivers of different levels of accuracy have been compared in order to determine whether they are suitable for new assistance applications. Experimental data are consistent with the theoretical approach.

References

    1. 1)
      • J. Njord , J. Peters , M. Freitas . Safety applications of intelligent transportation systems in Europe and Japan.
    2. 2)
      • Wevers, K., Lu, M.: `Digital maps, driving systems and traffic safety: the data chain for in-vehicle map databases', Proc. Sixth European Congress and Exhibition on Intelligent Transport Systems and Services, 18–20 June 2007, Aalborg.
    3. 3)
      • F. Jiménez , J.E. Naranjo . Nuevos requerimientos de precisión en el posicionamiento de vehículos para aplicaciones ADAS (in Spanish). Dyna Ingeniería e Industria , 3 , 245 - 250
    4. 4)
      • Reichart, G., Friedmann, S., Dorrer, C., Rieker, H., Drechsel, E., Wermuth, G.: `Potentials of BMW driver assistance to improve fuel economy', Proc. of the FISITA World Automotive Congress, 27 September–1 October 1998, Paris.
    5. 5)
      • P.J.T. Venhovens , J.H. Bernasth , J.P. Löwenau , H.G. Rieker , M. Schraut . The application of advanced vehicle navigation in BMW driver assistance systems.
    6. 6)
      • F. Jiménez , F. Aparicio , J. Páez . Evaluation of in-vehicle dynamic speed assistance in Spain: algorithm and driver behaviour. IET Intell. Transp. Syst. , 2 , 132 - 142
    7. 7)
    8. 8)
      • Baum, G.: `The infrastructure and evolution of mapmaking', Proc. Tenth World Congress and Exhibition on Intelligent Transport Systems and Services, 16–20 November 2003, Madrid.
    9. 9)
      • Organisation for Economic Co-operation and Development: ‘Road safety: impact of new technologies’ (OECD Publications, 2003).
    10. 10)
      • T'Siobbel, S., van Essen, R.: `The map enabled ADAS future', Proc. FISITA World Automotive Congress, 23–27 May 2004, Barcelona.
    11. 11)
      • Lu, M., Wevers, K., van der Heijden, R., Heijer, T.: `ADAS applications for improving traffic safety', Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, 10–13 October 2004, The Hague, The Netherlands.
    12. 12)
      • J.C. Pandazis . NEXTMAP: investigating the future of digital maps databases.
    13. 13)
      • eSafety Forum. ‘Digital maps working group final report’. European Commission (eSafety Forum), Brussels, 2005.
    14. 14)
      • S. T'Siobbel , H.U. Otto , D. Kopp . Map&ADAS subproject. Safety digital maps requirements.
    15. 15)
      • H. Bendafi , K. Hummelsheim , H. Sabel , S. van de Ven . Classification of data capturing/production techniques.
    16. 16)
      • J.C. Miles , K. Chen . (2004) ITS handbook.
    17. 17)
      • J. Yerpez , F. Ferrandez . Road characteristics and safety. Identification of the part played by road factors in accident generation. INRETS
    18. 18)
      • EDMap Consortium: ‘Enhanced digital mapping project’. Final Report, 2004.
    19. 19)
      • M. Castro , L. Iglesias , R. Rodríguez-Solano , J.A. Sánchez . Geometric modelling of highways using global positioning system (GPS) data and spline approximation. Transp. Res. C, Emerg. Technol. , 4 , 233 - 243
    20. 20)
    21. 21)
      • (2002) Collecting, processing and integrating GPS data into GIS.
    22. 22)
    23. 23)
      • M. Imran , Y. Hassan , D. Patterson . GPS–GIS based procedure for tacking vehicle path on horizontal alignments. Comput.-Aided Civ. Infrastruct. Eng. , 5 , 383 - 394
    24. 24)
      • P.G. Trepagnier , J. Nagel , P.M. Kinney , C. Koutsougeras , M. Dooner . KAT-5: robust systems for autonomous vehicle navigation in challenging and unknown terrain. J. Field Robot. , 8 , 509 - 526
    25. 25)
    26. 26)
    27. 27)
      • F. Jiménez , F. Aparicio , G. Estrada . Measurement uncertainty determination and curve fitting algorithms for development of accurate digital maps for advanced driver assistance systems. Transp. Res. C, Emerg. Technol. , 3 , 225 - 239
    28. 28)
      • Labrech, A., Boucher, C., Noyer, J.C.: `Fusion of GPS and odometer measurements for map-based vehicle navigation', Proc. IEEE Int. Conf. on Industrial Technology, 2004, Tunisia.
    29. 29)
    30. 30)
    31. 31)
      • H. Xu , C. Wang , M. Yang , R. Yang . Position estimation for intelligent vehicles using an unscented Kalman filter. Int. J. Veh. Auton. Syst. , 12 , 186 - 194
    32. 32)
      • T.D. Gillespie . (1999) Fundamentals of vehicle dynamics.
    33. 33)
      • G. Genta . (1999) Motor vehicle dynamics. Modeling and simulation.
    34. 34)
      • J.Y. Wong . (2001) Theory of ground vehicles.
    35. 35)
      • G. Nalecz . Development and validation of light vehicle dynamics simulation (LVDS).
    36. 36)
      • C. Vera , J. Félez . (1994) Dinámica vehicular basada en la técnica del Bond graph (in Spanish).
    37. 37)
      • T.D. Day . An overview of the HVE vehicle model.
    38. 38)
      • (2001) CARSIM 5: math models manual.
    39. 39)
      • B.N. Taylor , C.E. Kuyatt . (1994) Guidelines for evaluating and expressing the uncertainty of NIST measurement results.
    40. 40)
      • (1999) Expression of uncertainty of measurement in calibration.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2010.0042
Loading

Related content

content/journals/10.1049/iet-its.2010.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address