http://iet.metastore.ingenta.com
1887

Current paradigms in intelligent transportation systems

Current paradigms in intelligent transportation systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Intelligent transportation systems (ITS) constitute today a multidisciplinary field of study involving a large number of different research areas. As a consequence, it is difficult to achieve a structured view of ITS, which is necessary to unify efforts and as guidance for future developments. This study aims to identify the main paradigms in the field of ITS by semantically analysing studies related to this general topic. An understanding about which research is considered valuable by the research community to build upon may provide valuable insights in this field. As a result of the statistical treatment of data, up to 13 paradigms are obtained. The scope of these paradigms and the relationships between them have also been detailed, providing a structured vision of ITS synthesised in a map form.

References

    1. 1)
      • O. Andrisano , R. Verdone , M. Nakagawa . Intelligent transportation systems: the role of third generation mobile radio networks. IEEE Commun. Mag. , 9 , 144 - 151
    2. 2)
      • S. Toral , M. Vargas , F. Barrero . Embedded multimedia processors for road-traffic parameter estimation. Computer , 12 , 61 - 68
    3. 3)
      • B. Mcqueen , J. Mcqueen . (1999) Intelligent transportation systems architectures.
    4. 4)
      • M. Natvig , H. Westerheim . National multimodal travel information – a strategy based on stakeholder involvement and intelligent transportation system architecture. IET Intell. Transp. Syst. , 2 , 102 - 109
    5. 5)
      • S. Toral , M. Vargas , F. Barrero , M.G. Ortega . Improved sigma-delta background estimation for vehicle detection. Electron. Lett. , 1 , 32 - 34
    6. 6)
      • Figueiredo, L., Jesus, I., Machado, J.A.T., Ferreira, J.R., Martins de carvalho, J.L.: `Towards the development of intelligent transportation systems', Proc. 2001 IEEE Intelligent Transportation Systems, 2001, Oakland, CA, USA, p. 1206–1211.
    7. 7)
      • F.-Y. Wang , P.B. Mirchandani , N. Zheng . Advances and trends in research and development of intelligent transportation systems: an introduction to the special issue. IEEE Trans. Intell. Transp. Syst. , 4 , 222 - 223
    8. 8)
      • N. Zheng , H. Kawashima . Advances and trends in research and development of vehicular electronics and safety: special section. IEEE Trans. Intell. Transp. Syst. , 1 , 106 - 107
    9. 9)
      • (2006) Strategic research agenda.
    10. 10)
      • US Department of Transportation, Federal Highway Administration: ‘Intelligent transportation systems benefits, costs and lessons learned’ (Mitretek Systems, 2005).
    11. 11)
      • http://isi3.isiknowledge.com, accessed October 2009.
    12. 12)
      • C. Wohlin . An analysis of the most cited articles in software engineering journals – 2001. Inf. Soft. Technol. , 3 - 9
    13. 13)
      • Y. Ding , G.G. Chowdhury , S. Foo . Bibliometric cartography of information retrieval research by using co-word analysis. Inf. Process. Manage. , 817 - 842
    14. 14)
      • H. Small . Co-citation in the scientific literature: a new measure of the relationship between two documents. Essays Info. Sci. , 28 - 31
    15. 15)
      • C.H. Cheng , A. Kumar , J.G. Motwani , A. Reisman , M.S. Madan . A Citation analysis of the technology innovation management journals. IEEE Trans. Eng. Manage. , 1 , 4 - 13
    16. 16)
      • C. Chen , R.J. Paul . Visualizing a knowledge domain's intellectual structure. Computer , 3 , 65 - 71
    17. 17)
      • M. Callon , J.P. Courtial , F. Laville . Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics , 1 , 153 - 205
    18. 18)
      • G. Salto , M.J. Mcgill . (1983) An introduction to modern information retrieval.
    19. 19)
    20. 20)
    21. 21)
      • A.Y. Ng , M. Jordan , Y. Weiss . (2001) On spectral clustering: analysis and an algorithm, Advances in neural information processing systems 14.
    22. 22)
      • H. Zha , C. Ding , M. Gu , X. He , H. Simon . (2001) Spectral relaxation for k-means clustering, Advances in neural information processing systems 14.
    23. 23)
      • W. Xu , X. Liu , Y. Gong . Document clustering based on non-negative matrix factorization. Proc. Int. Conf. on Research and Development in Information Retrieval , 267 - 273
    24. 24)
      • W. Xu , Y. Gong . Document clustering by concept factorization. Proc. Int. Conf. on Research and Development Information Retrieval , 202 - 209
    25. 25)
      • S. Deerwester , S.T. Dumais , G.W. Furnas , T.K. Landauer , R. Harshman . Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. , 6 , 391 - 407
    26. 26)
      • T.L. Griffiths , M. Steyvers . Finding scientific topics. Proc. National Academy of Sciences, USA , 5228 - 5235
    27. 27)
    28. 28)
      • T. Hofmann . Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. J. , 1 , 177 - 196
    29. 29)
      • V. Sugumaran , V.C. Storey . Ontologies for conceptual modeling: their creation, use and management. Data Knowl. Eng. , 251 - 271
    30. 30)
      • Shafiei, M.M., Milios, E.E.: `Latent Dirichlet co-clustering', Sixth Int. Conf. on Data Mining, ICDM'06, 2006, p. 542–551.
    31. 31)
      • C.D. Manning , H. Schütze . (1999) Foundations of statistical natural language processing.
    32. 32)
      • M. Koskela , A.F. Smeaton , J. Laaksonen . Measuring concept similarities in multimedia ontologies: analysis and evaluations. IEEE Trans. Multimedia , 5 , 912 - 922
    33. 33)
      • I. Rowlands . Patterns of author co-citation in information policy: evidence of social, collaborative and cognitive structure. Scientometrics , 3 , 533 - 546
    34. 34)
      • A.C. Rencher . (2002) Methods of multivariate analysis.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2009.0102
Loading

Related content

content/journals/10.1049/iet-its.2009.0102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address