http://iet.metastore.ingenta.com
1887

Traffic control and intelligent vehicle highway systems: a survey

Traffic control and intelligent vehicle highway systems: a survey

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Intelligent Transport Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Traffic congestion in highway networks is one of the main issues to be addressed by today's traffic management schemes. Automation combined with the increasing market penetration of on-line communication, navigation and advanced driver assistance systems will ultimately result in intelligent vehicle highway systems (IVHS) that distribute intelligence between roadside infrastructure and vehicles and that – in particular on the longer term – are one of the most promising solutions to the traffic congestion problem. In this study, the authors present a survey on traffic management and control frameworks for IVHS. First, they give a short overview of the main currently used traffic control methods for freeways. Next, they discuss IVHS-based traffic control measures. Then, various traffic management architectures for IVHS such as PATH, Dolphin, Auto21 CDS etc. are discussed and a comparison of the various frameworks is presented. Finally, the authors sketch how existing traffic control methodologies could fit in an IVHS-based traffic control set-up.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • Bishop, R.: `A survey of intelligent vehicle applications worldwide', Proc. IEEE Intelligent Vehicles Symp., 2000, Dearborn, Michigan, p. 25–30.
    6. 6)
      • C.F. Daganzo . (1997) Fundamentals of transportation and traffic operations.
    7. 7)
      • P. Kachroo , K. Özbay . (1999) Feedback control theory for dynamic traffic assignment, Advances in industrial control..
    8. 8)
      • M. Papageorgiou . (1983) Applications of automatic control concepts to traffic flow modeling and control.
    9. 9)
      • Kotsialos, A., Papageorgiou, M.: `Freeway ramp metering: an overview', Proc. Third Annual IEEE Conf. on Intelligent Transportation Systems (ITSC 2000), October 2000, Dearborn, Michigan, p. 228–239.
    10. 10)
      • S.A. Nsour , S.L. Cohen , J.E. Clark , A.J. Santiago . Investigation of the impacts of ramp metering on traffic flow with and without diversion. Transp. Res. Rec. , 1365 , 116 - 124
    11. 11)
      • Taale, H., Middelham, F.: `Ten years of ramp-metering in The Netherlands', Proc. Tenth Int. Conf. on Road Transport Information and Control, April 2000, London, England, p. 106–110.
    12. 12)
      • F.L. Hall , K. Agyemang-Duah . Freeway capacity drop and the definition of capacity. Transp. Res. Rec. , 1320 , 91 - 98
    13. 13)
      • A.D. May . (1990) Traffic flow fundamentals.
    14. 14)
      • K.J. Åström , B. Wittenmark . (1997) Computer-controlled systems – theory and applications.
    15. 15)
      • Papageorgiou, M., Hadj-Salem, H., Middelham, F.: `ALINEA local ramp metering: summary of field results', Proc. 76th Annual Meeting of the Transportation Research Board, 1997, Washington, DC, p. 970032.
    16. 16)
      • Y.J. Stephanedes , E. Kwon , K. Chang . Control emulation method for evaluating and improving traffic-responsive ramp metering strategies. Transp. Res. Rec. , 1360 , 42 - 45
    17. 17)
    18. 18)
      • Cassandras, C.G., Pepyne, D.L., Wardi, Y.: `Optimal control of systems with time-driven and event- driven dynamics', Proc. 37th IEEE Conf. on Decision and Control, December 1998, Tampa, Florida, p. 7–12.
    19. 19)
      • D.E. Kirk . (1970) Optimal control theory: an introduction.
    20. 20)
    21. 21)
      • R. Weinstock . (1952) Calculus of variations.
    22. 22)
      • M.R. Hestenes . (1966) Calculus of variations and optimal control theory.
    23. 23)
      • R. Bellman . (1957) Dynamic programming.
    24. 24)
      • E.F. Camacho , C. Bordons . (1995) Model predictive control in the process industry.
    25. 25)
      • J.M. Maciejowski . (2002) Predictive control with constraints.
    26. 26)
      • S.J. Qin , T.A. Badgwell . An overview of industrial model predictive control technology. Am. Inst. Chem. Eng. , 316 , 232 - 256
    27. 27)
    28. 28)
    29. 29)
      • P.M. Pardalos , M.G.C. Resende . (2002) Handbook of applied optimization.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • H.T. Nguyen , E.A. Walker . (1999) A first course in fuzzy logic.
    38. 38)
    39. 39)
      • R.S. Sutton , A.G. Barto . (1998) Reinforcement learning: an introduction.
    40. 40)
      • G. Weiss . (1999) Multiagent systems: a modern approach to distributed artificial intelligence.
    41. 41)
      • A. Aamodt , E. Plaza . Case-based reasoning: foundational issues, methodological variations and system approaches. AI Commun. , 1 , 39 - 59
    42. 42)
      • G.J. Klir , B. Yuan . (1995) Fuzzy sets and fuzzy logic: theory and applications.
    43. 43)
    44. 44)
      • S. Russell , P. Norvig . (2003) Artificial intelligence: a modern approach.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • S.G. Ritchie , N.A. Prosser . Real-time expert system approach to freeway incident management. Transp. Res. Rec. , 1320 , 7 - 16
    49. 49)
    50. 50)
      • Karimi, A., Gupta, A.: `Incident management system for Santa Monica Smart Corridor', Proc. 63rd Annual Meeting of the Institute of Transportation Engineers, 1993, The Hague, The Netherlands, p. 180–185.
    51. 51)
      • Roseman, D., Tvedten, S.S.: `Santa Monica Freeway Smart Corridor project operational multi-agency traffic management and expert system', Mobility for Everyone, Proc. Fourth World Congress on Intelligent Transport Systems, October 1997, Berlin, Germany, p. 1032.
    52. 52)
    53. 53)
      • Krause, B., von Altrock, C.: `A complete fuzzy logic control approach for existing traffic control systems', Mobility for Everyone, Proc. Fourth World Congress on Intelligent Transportation Systems, October 1997, Berlin, Germany, p. 2045.
    54. 54)
    55. 55)
      • Hegyi, A., De Schutter, B., Hoogendoorn, S.P., Babuška, R., van Zuylen, H.: `Fuzzy decision support system for traffic control centers', Proc. European Symp. on Intelligent Techniques (ESIT 2000), September 2000, Aachen, Germany, p. 389–395, paper BC-01-2.
    56. 56)
      • S.P. Hoogendoorn , B. De Schutter , H. Schuurman . Decision support in dynamic traffic management. Real-time scenario evaluation. Eur. J. Transp. Infrastruct. Res. , 1 , 21 - 38
    57. 57)
      • De Schutter, B., Hoogendoorn, S.P., Schuurman, H., Stramigioli, S.: `A multi-agent case-based traffic control scenario evaluation system', Proc. IEEE Sixth Int. Conf. on Intelligent Transportation Systems (ITSC'03), October 2003, Shanghai, China, p. 678–683.
    58. 58)
      • Bogenberger, K., Keller, H., May, A.D.: `A neuro-fuzzy approach for ramp metering', Proc. Tenth Int. Conf. on Road Transport Information and Control, 2000, London, England, p. 101–105.
    59. 59)
      • Vukanovic, S., Ernhofer, O.: `Evaluation and field implementation of the fuzzy logic based ramp metering algorithm accezz', Proc. Ninth IEEE Conf. on Intelligent Transportation Systems, 2006, Toronto, Canada, p. 437–441.
    60. 60)
      • Middelham, F.: `Fuzzy logic demo', Technical report, 1993, Rijkswaterstaat, AVV, Rotterdam, The Netherlands, In Dutch.
    61. 61)
      • K.J. Åström , P. Albertos , M. Blanke , A. Isidori , W. Schaufelberger , R. Sanz . (2000) Control of Complex Systems.
    62. 62)
      • A.V. Fursikov . (2000) Optimal control of distributed systems: theory and applications.
    63. 63)
      • D.D. Šiljak . (1991) Decentralized control of complex systems.
    64. 64)
    65. 65)
      • R. Bishop . (2005) Intelligent vehicles technology and trends.
    66. 66)
      • Bishop, R.: http://www.ivsource.net/, 2005, accessed 2 June, 2009.
    67. 67)
    68. 68)
    69. 69)
      • http://www.damas.ift.ulaval.ca/projets/auto21/en/index.html, accessed 2 December, 2008.
    70. 70)
    71. 71)
    72. 72)
    73. 73)
      • Tsugawa, S., Kato, S., Tokuda, K., Matsui, T., Fujii, H.: `A cooperative driving system with automated vehicles and inter-vehicle communications in demo 2000', Proc. 2001 IEEE Conf. on Intelligent Transportation Systems, August 2001, Oakland, California, p. 918–923.
    74. 74)
      • http://www.cvisproject.org/, accessed 4 November 2008.
    75. 75)
    76. 76)
      • Leonard, N.E., Fiorelli, E.: `Virtual leaders, artificial potentials and coordinated control of groups', Proc. 40th IEEE Conf. on Decision and Control, 2001, Orlando, FL, p. 2968–2973.
    77. 77)
    78. 78)
      • Parker, L.E.: `Designing control laws for cooperative agent teams', Proc. IEEE Int. Conf. on Robotics and Automation, 1993, Atlanta, Georgia, p. 582–587.
    79. 79)
      • Richardson, M.J., Smith, D.: `Design of the driver interface for autonomous intelligent cruise control', Proc. IEE Colloquium on Design of the Driver Interface, 1995, London, England, p. 7/1–7/4.
    80. 80)
    81. 81)
      • L.C. Davis . Effect of adaptive cruise control systems on traffic flow. Phys. Rev. E , 1 - 8
    82. 82)
      • Persson, M., Botling, F., Hesslow, E., Johansson, R.: `Stop and go controller for adaptive cruise control', Proc. IEEE Int. Conf. on Control Applications, 1999, Kohala, Coast, Hawaii, p. 1692–1697.
    83. 83)
    84. 84)
    85. 85)
      • Blum, J., Eskandarian, A.: `Managing effectiveness and acceptability in intelligent speed adaptation systems', Int. Conf. on Intelligent Transportation Systems, September 2006, Toronto, Canada, p. 319–324.
    86. 86)
      • L.S. Comte . New systems: new behaviour?. Transp. Res. F , 2 , 95 - 111
    87. 87)
      • Carsten, O., Tate, F.: `Intelligent speed adaptation: the best collision avoidance system?', Proc. 17th Int. Technological Conf. on the Enhanced Safety of Vehicles, 2001, Amsterdam, The Netherlands, p. 1–10.
    88. 88)
    89. 89)
      • McDonald, M., Hounsell, N.B., Njoze, S.R.: `Strategies for route guidance systems taking account of driver response', Proc. Sixth Vehicle Navigation and Information Systems, July 1995, Seattle, Washington, p. 328–333.
    90. 90)
      • Shimizu, H., Kobayashi, M., Yonezawa, Y.: `A route guidance system of a traffic network', Proc. 34th SICE Annual Conf., July 1995, Hokkaido, Japan, p. 1549–1552.
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
      • Varaiya, P., Shladover, S.E.: `Sketch of an IVHS systems architecture', Vehicle Navigation and Information Systems, October 1991, Dearborn, Michigan, p. 909–922.
    97. 97)
      • http://www.ahsra.or.jp/, accessed 4 November, 2008.
    98. 98)
      • Tsugawa, S., Kato, S., Tokuda, K., Matsui, T., Fujii, H.: `An architecture for cooperative driving of automated vehicles', Proc. IEEE Intelligent Transportation Symp., 2000, Dearborn, Michigan, p. 422–427.
    99. 99)
      • Hallé, S., Chaib-draa, B., Laumonier, J.: `Car platoons simulated as a multiagent system', Proc. Fourth Workshop on Agent-Based Simulation, 2003, Montpellier, France, p. 57–63.
    100. 100)
      • van Arem, B.: `Cooperative vehicle-infrastructure systems: an intelligent way forward', 2007-D-R0158/B, Technical, , Verkeer en Vervoer, TNO, Delft, The Netherlands, In Dutch, 2007.
    101. 101)
      • http://www.safespot-eu.org/, accessed 4 November, 2008.
    102. 102)
      • Toulminet, G., Boussuge, J., Laurgeau, C.: `Comparative synthesis of the 3 main European projects dealing with cooperative systems (CVIS, SAFESPOT and COOPERS) and description of COOPERS demonstration site 4', Proc. 11th IEEE Conf. on Intelligent Transportation Systems, 2008, Beijing, China, p. 809–814.
    103. 103)
      • http://www.prevent-ip.org/, accessed 4 November, 2008.
    104. 104)
      • Bana, S.: `Coordinating automated vehicles via communication', UCB-ITS-PRR-2001-20, Technical, , PATH Research Report, Berkely, California, 2001.
    105. 105)
      • Godbole, D.N., Lygeros, J., Singh, E., Deshpande, A., Lindsey, A.E.: `Design and verification of communication protocols for degraded modes of operation of AHS', Proc. 34th IEEE Conf. on Decision and Control, 1995, New Orleans, Louisiana, p. 427–432.
    106. 106)
    107. 107)
      • Baskar, L.D., De Schutter, B., Hellendoorn, J.: `Dynamic speed limits and on-ramp metering for IVHS using model predictive control', Proc. 11th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC 2008), October 2008, Beijing, China, p. 821–826.
    108. 108)
      • Baskar, L.D., De Schutter, B., Hellendoorn, J.: `Model-based predictive traffic control for intelligent vehicles: dynamic speed limits and dynamic lane allocation', Proc. 2008 IEEE Intelligent Vehicles Symp. (IV'08), June 2008, Eindhoven, The Netherlands, p. 174–179.
    109. 109)
      • K.M. Miettinen . (1999) Nonlinear multiobjective optimization.
    110. 110)
      • Holve, R., Protzel, P., Naab, K.: `Generating fuzzy rules for the acceleration control of an adaptive cruise control system', Proc. 1996 Biennial Conf. on North American Fuzzy Information Processing Society, 1996, Berkeley, California, p. 451–455.
    111. 111)
    112. 112)
      • Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: `Design of platoon maneuver protocols for IVHS', 96-21, Technical, , California Partners for Advanced Transit and Highways PATH, University of California, Berkeley, California, 1991.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-its.2009.0001
Loading

Related content

content/journals/10.1049/iet-its.2009.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address