Image-based facial recognition in the domain of high-order polynomial one-way mapping

Access Full Text

Image-based facial recognition in the domain of high-order polynomial one-way mapping

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a secure facial recognition system. The biometric data are transformed to the cancellable domain using high-order polynomial functions and co-occurrence matrices. The proposed method has provided both high-recognition accuracy and biometric data protection. Protection of data relies on the polynomial functions, where the new reissued cancellable biometric can be obtained by changing the polynomial parameters. Besides the protection of data, the reconstructed co-occurrence matrices also contributed to the accuracy enhancement. Hadamard product is used to reconstruct the new measure and has shown high flexibility in proving a new relationship between two independent covariance matrices. The proposed cancellable biometric is treated in the same manner as the original biometric data, which enables replacement of original data by the novel cancellable algorithm with no change to the authentication system. The two-dimensional principal component analysis recognition algorithm is used at the authentication stage. Results have shown high non-reversibility of data with improved accuracy over the original data and raised the performance recognition rate to 97%.

Inspec keywords: principal component analysis; biometrics (access control); face recognition; covariance matrices; polynomials

Other keywords: biometric data protection; cooccurrence matrices; two-dimensional principal component analysis; high-order polynomial one-way mapping; high-recognition accuracy; Hadamard product; image-based facial recognition; high-order polynomial functions

Subjects: Interpolation and function approximation (numerical analysis); Algebra; Algebra; Image recognition; Computer vision and image processing techniques; Interpolation and function approximation (numerical analysis); Other topics in statistics; Other topics in statistics

References

    1. 1)
      • Chung, Y.W., Moon, D., Lee, S.J., Jung, S.H., Kim, T.H., Ahn, D.: `Automatic alignment of fingerprint features for fuzzy fingerprint vault', Proc. 1st SKLOIS Conf. Information Security and Cryptology (CISC), 2005, Beijing, China, p. 358–369.
    2. 2)
      • R.C. Gonzales , R.E. Woods . (1993) Digital image processing.
    3. 3)
      • Juels, A., Sudan, M.: `A fuzzy vault scheme', Proc. IEEE Int. Symp. Information Theory, 2002, p. 408.
    4. 4)
      • O. Goldreich . (2001) Computational difficulty, Foundations of cryptography.
    5. 5)
      • A.B.J. Teoh , D.C.L. Ngo . Cancellable biometrics featuring with tokenised random number. Pattern Recognit. , 1454 - 1460
    6. 6)
      • M. Turk , A. Pentland . Eigenfaces for recognition. J. Cogn. Neurosci. , 71 - 86
    7. 7)
      • P.N. Belhumeur , J.P. Hespanha , D.J. Kriegman . Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. , 711 - 720
    8. 8)
      • Han, Q., Wang, Z., Niu, X.: `A non-uniform quantizing approach to protect biometric templates', Int. Conf. Intelligent Information Hiding and Multimedia Signal Proc., IIH-MSP'06, 2006, p. 693–698.
    9. 9)
      • Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: `Cryptographic key generation from voice', Proc. IEEE Symp. Security and Privacy, S & P 2001, p. 202–213.
    10. 10)
      • Juels, A., Wattenberg, M.: `A fuzzy commitment scheme', Proc. 6th ACM Conf. Computer and Communications Security, 1999, p. 28–36.
    11. 11)
      • Savvides, M., Kumar, B.V.K.V., Khosla, P.K.: `Corefaces – robust shift invariant PCA based correlation filter for illumination tolerant face recognition', IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR'04), 2004.
    12. 12)
      • Dabbah, M.A., Woo, W.L., Dlay, S.S.: `Non-reversible transformation for face biometric security', 4thIET Visual Information Engineering (VIE2007), 2007, London, UK.
    13. 13)
      • Zheng, G., Li, W., Zhan, C.: `Cryptographic key generation from biometric data using lattice mapping', 18thInt. Conf. Pattern Recognition, ICPR, 2006, p. 513–516.
    14. 14)
      • B.-G. Park , K.-M. Lee , S.-U. Lee . Face recognition using face-ARG matching. IEEE Trans. Pattern Anal. Mach. Intell. , 1982 - 1988
    15. 15)
      • N.K. Ratha , J.H. Connell , R.M. Bolle . Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. , 614 - 634
    16. 16)
      • Mutelo, R.M., Khor, L.C., Woo, W.L., Dlay, S.S.: `Two-dimensional reduction PCA: a novel approach for feature extraction, representation, and recognition', Visualization and Data Analysis 2006, 2006, San Jose, CA, USA, p. 60600E-10.
    17. 17)
      • C.H. Liu , C.A. Collin , R. Farivar , A. Chaudhuri . Recognizing faces defined by texture gradients. Percept. Psychophys. , 158 - 167
    18. 18)
      • R.M. Bolle , J.H. Connell , N.K. Ratha . Biometric perils and patches. Pattern Recognit. , 2727 - 2738
    19. 19)
      • Clancy, T.C., Kiyavash, N., Lin, D.J.: `Secure smartcard-based fingerprint authentication', Proc. ACM SIGMM Workshop on Biometrics Methods and Applications, 2003, Berkley, CA, p. 45–52.
    20. 20)
      • Monrose, F., Reiter, M.K., Wetzel, S.: `Password hardening based on keystroke dynamics', Proc. 6th ACM Conf. Computer and Communications Security, 1999, Singapore, Kent Ridge Digital Labs, p. 73–82.
    21. 21)
      • R.M. Haralick , K. Shanmugam , I.H. Dinstein . Textural features for image classification. IEEE Trans. Syst. Man Cybern. , 610 - 621
    22. 22)
      • Sutcu, Y., Li, Q., Memon, N.: `How to protect biometric templates', SPIE Conf. Security, Steganography and Watermarking of Multimedia Contents IX, 2007, San Jose, CA.
    23. 23)
      • Samaria, F., Harter, A.: `Parameterisation of a stochastic model for human face identification', 2ndIEEE Workshop on Applications of Computer Vision, The Olivetti Research Laboratory (ORL) Face Database, 1994, Sarasota, FL.
    24. 24)
      • I. Biederman , P. Kalocsai . Neurocomputational bases of object and face recognition. Philos. Trans. R. Soc. B, Biol. Sci. , 1203 - 1219
    25. 25)
      • A.W. Young , D.C. Hay , K.H. McWeeny , B.M. Flude , A.W. Ellis . Matching familiar and unfamiliar faces on internal and external features. Perception , 737 - 746
    26. 26)
      • J. Yang , D. Zhang , A.F. Frangi , J.-Y. Yang . Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. , 131 - 137
    27. 27)
      • T. Acharya , A.K. Ray . (2005) Image processing: principles and applications.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr_20070203
Loading

Related content

content/journals/10.1049/iet-ipr_20070203
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading