Advanced indexing schema for imaging applications: three case studies
Advanced indexing schema for imaging applications: three case studies
- Author(s): S. Battiato ; G. Di Blasi ; D. Reforgiato
- DOI: 10.1049/iet-ipr:20060315
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): S. Battiato 1 ; G. Di Blasi 1 ; D. Reforgiato 1
-
-
View affiliations
-
Affiliations:
1: Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy
-
Affiliations:
1: Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy
- Source:
Volume 1, Issue 3,
September 2007,
p.
249 – 268
DOI: 10.1049/iet-ipr:20060315 , Print ISSN 1751-9659, Online ISSN 1751-9667
- « Previous Article
- Table of contents
- Next Article »
Imaging techniques and applications often require heavy computations for finding the k-nearest-neighbour of a given pattern. Texture synthesis, image colourisation and super-resolution are all affected by this issue. Advanced clustering-based indexing schemas over metric spaces speed-up efficiently both k-nearest-neighbour and range searches. By using them, we are able to save CPU time without losing quality which would be lost using approximate approaches. Moreover, with the proposed technique we are able to convert a batch process task into a real-time task and, more importantly, it might be run on a typical user-end PC desktop rather than powerful mainframes. It has been shown how the application of recently reported well-known indexing schemas improves the speed performance of the above problems.
Inspec keywords: image resolution; image colour analysis; visual databases; pattern clustering; image texture; database indexing
Other keywords:
Subjects: Spatial and pictorial databases; Optical, image and video signal processing; Computer vision and image processing techniques
References
-
-
1)
- A. Gersho , R.M. Gray . (1991) Vector quantization and signal compression.
-
2)
- Ciaccia, P., Patella, M., Zezula, P.: `M-tree: an efficient access method for similarity search in metric spaces', Proc. 23th Int. Conf. on Very Large Databases, 1997, p. 426–435.
-
3)
- C. Aggarwal , J.L. Wolf , P.S. Yu , M. Epelman . Using unbalanced trees for indexing multidimensional objects. Knowl. Inf. Syst. , 3 , 309 - 336
-
4)
- T. Bozkaya , M. Ozsoyoglu . Indexing large metric spaces for similarity search queries. ACM Trans. Database Syst. , 3 , 361 - 404
-
5)
- Chazelle, B.: `Computational geometry: a retrospective', Proc. 26th Annual ACM Symp. Theory of Computing, 1994, p. 75–94.
-
6)
- Ciaccia, P., Patella, M.: `Pac nearest neighbor queries: approximate and controlled search in high-dimensional and metric spaces', ICDE, 2000, p. 244–255.
-
7)
- D.S. Ebert , F.K. Musgrave , D. Peachey , K. Perlin , S. Worley . (1998) Texturing and modeling: a procedural approach.
-
8)
- T. Mitchell . (1997) Machine learning.
-
9)
- Di Blasi, G., and Reforgiato Recupero, D.: ‘Fast colorization of gray images'. Eurographics Italian Chapter, 2004.
-
10)
- W.F. Schreiber . (1986) Fundamentals of eletronic imaging systems.
-
11)
- Heeger, D.J., Bergen, J.R.: `Pyramid-based texture analysis/synthesis', Computer Graphics, ACM SIGGRAPH, 1995, p. 229–238.
-
12)
- K. Perlin . An image synthesizer. Proc. SIGGRAPH’ 85 , 287 - 296
-
13)
- Wei, L.Y., Levoy, M.: `Fast texture synthesis using tree-structured vector quantization', Proc. ACM-SIGGRAPH, 2000, p. 479–488.
-
14)
- Juan, A., Vidal, E.: `An optimized version of the approximating and eliminating search algorithm (AESA) for nearest neighbour classification', Technical report ITI-ITE-3/98, 1998.
-
15)
- F. Moreno-Seco , J. Oncina , L. Mico' . Improving the linear approximating and eliminating search algorithm (LAESA) error rates. Pattern Recognit. Appl. , 37 - 43
-
16)
- Chávez, E., Navarro, G.: `An effective clustering algorithm to index high dimensional metric spaces', Proc. SPIRE, 2000, p. 75–86.
-
17)
- G. Navarro . Searching in metric spaces by spatial approximation. VLDB J. , 28 - 46
-
18)
- Indyk, P., Motwani, R.: `Approximate nearest neighbors: towards removing the curse of dimensionality', Proc. 30th Annual ACM Symp. Theory of Computing, 1998, p. 604–613.
-
19)
- Gionis, A., Indyk, P., Motwani, R.: `Similarity search in high dimensions via hashing', Proc 25th VLDB Conf., 1999, p. 518–529.
-
20)
- Fekri, F., Mersereau, R.M., Schafer, R.W.: `A generalized interpolative vq method for jointly optimal quantization and interpolation of images', Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 1998, 5, p. 2657–2660.
-
21)
- Traina, C., Traina, A., Seeger, D., Faloutsos, C.: `Slim-trees: high performace metric trees minimizing overlap between nodes', Proc. 7th Int. Conf. Extending Database Technology, 2000, p. 51–56, (Lect. Notes Comput. Sci., 1777).
-
22)
- Simoncelli, E., Portilla, J.: `Texture characterization via joint statistics of wavelet coefficient magnitudes', Fifth Int. Conf. Image Processing, 1998, 1, p. 62–66.
-
23)
- S.C. Zhu , Y.N. Wu , D. Mumford . Filters, random fields, and maximum entropy (frame) – towards a unified theory for texture modeling. Int. J. Comput. Vis. , 2 , 107 - 126
-
24)
- E. Vidal . New formulation and improvements of the nearest- neighbour approximating and eliminating search algorithm (AESA). Pattern Recognit. Lett. , 1 , 1 - 7
-
25)
- Silberg J.: http://www.cinesite.com/core/press/articles/1998/10_00_98- team.html1998.
-
26)
- Wei, L.Y., Levoy, M.: `Order-independent texture synthesis', Technical report, 2002.
-
27)
- Moreno-Seco, F., Oncina, J., Mico', L.: `Improving the LAESA algorithm error rates', Proc. VIII Symp. NdRdFyAdI, 1999, 1, p. 413–419.
-
28)
- University of Washington Data Compression Laboratory: ‘TSVQ’. http://dcl.ee.washington.edu/.
-
29)
- Chávez, E., Navarro, G.: `A probabilistic spell for the curse of dimensionality', Proc. 3rd Workshop on Algorithm Engineering and Experimentation (ALENENEX'01), 2001, 2153, p. 147–160, Lect. Notes Comput. Sci.
-
30)
- Figueroa, K., Chavez, E., Navarro, G., Paredes, R.: `On the least cost for proximity searching in metric spaces', WEA 2006, 2006, p. 279–290.
-
31)
- E. Reinhard , M. Ashikhmin , B. Gooch , P. Shirley . Color transfer between images. IEEE Comput. Graph. Appl. , 34 - 40
-
32)
- G.R. Hjaltason , H. Samet . Distance browsing in spatial database. ACM Trans. Inf. Syst. , 2 , 265 - 318
-
33)
- Rogowitz, B.E., Kalvin, A.D.: `The “Which Blair Project”: a quick visual method for evaluating perceptual color maps', Proc. IEEE Visualization 2001, 2001.
-
34)
- E. Vidal . An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recognit. Lett. , 3 , 145 - 157
-
35)
- K. Popat , R. Picard . Novel cluster-based probability model for texture synthesis, classification, and compression. Proc. SPIE , 756 - 768
-
36)
- K. Beyer , J. Goldstein , R. Ramakrishnan , U. Shaft . (1999) When is nearest neighbor meaningful?’. Proc. 7th Int. Conf. Database Theory.
-
37)
- Peachey, D.: `Solid texturing of complex surfaces', Proc. SIGGRAPH’ 85, 1985, p. 279–286.
-
38)
- Sumanasekara, S., Ramakrishna, M.V.: `Chilma: an efficient high dimensional indexing structure for image database', Proc. First IEEE Pacific-Rim Conf. Multimedia, 2000, p. 76–79.
-
39)
- Battiato, S., Pulvirenti, A., Reforgiato, D.: `Antipole clustering for fast texture synthesis', Proc. Winter School of Computer Graphics (WSCG), 2003.
-
40)
- Bustos, B., Navarro, G.: `Probabilistic proximity searching algorithms based on compact partitions', Proc. SPIRE, 2002, p. 284–297.
-
41)
- Di Blasi, G., Gallo, G., Petralia, M.: `Smart ideas for photomosaic rendering', Proc. Eurographics Italian Chapter 2006, 2006, p. 267–271.
-
42)
- E. Chávez , G. Navarro , R. BaezaYates , J.L. Marroquin . Searching in metric spaces. ACM Comput. Surv. , 3 , 273 - 321
-
43)
- Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: `Proximity matching using fixed-queries trees', Proc. Combinatorial Pattern Matching, 5th Annual Symp., 1994, p. 198–212, (Lect. Notes Comput. Sci., 807).
-
44)
- D. Cantone , A. Ferro , A. Pulvirenti , D. Reforgiato , D. Shasha . Antipole tree indexing to support range search and k-nearest-neighbor search in metric spaces. IEEE Trans. Knowl. Data Eng. , 4 , 535 - 550
-
45)
- W. Freeman , E. Pasztor , O. Carmichael . Learning low-level vision. Int. J. Comput. Vis. , 1 , 25 - 47
-
46)
- Berchtold, S., Keim, D.A., Kriegel, H.P.: `The x-tree: an index structure for high-dimensional data', Proc. 22th Int. Conf. Very Large Database, 1996, p. 28–39.
-
47)
- E. Chávez , G. Navarro . A compact space decomposition for effective metric indexing. Pattern Recognit. Lett. , 9 , 1363 - 1376
-
48)
- S. Thurnhofer , S. Mitra . Edge-enhanced image zooming. Opt. Eng. , 7 , 1862 - 1870
-
49)
- Welsh, T., Ashikmin, M., Mueller, K.: `Transferring color to greyscale images', Proc. ACM SIGGRAPH 2002, 2002.
-
50)
- Ashikhmin, M.: `Synthesizing natural textures', ACM Symp. Interactive 3D Graphics, 2001, p. 217–226.
-
51)
- R.R. Schultz , R.L. Stevenson . A bayesian approach to image expansion for improved definition. IEEE Trans. Image Process. , 3 , 233 - 242
-
52)
- Di Blasi, G., Gallo, G., Petralia, M.: `Puzzle image mosaic', Proc. IASTED/VIIP2005, 2005.
-
53)
- Hertzmann, A., Jacobs, C.E., Olivier, N., Curless, B., Salesin, D.H.: `Image analogies', ACM SIGGRAPH, 2001.
-
54)
- Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: `Image analogies', Proc. ACM SIGGRAPH 2001, 2001.
-
55)
- Freeman, W.T., Jones, T.R., Pasztor, E.C.: `Example-based superresolution', 2001, MERL TR-2001-340.
-
56)
- W.T. Freeman , E.C. Pasztor . Learning to estimate scenes from images. Adv. Neural Information Process. Syst. , 775 - 781
-
57)
- , : `Super-resolution', Technical report, 2002, 24 Régis Destobbeleire:.
-
58)
- R.G. Keys . Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. , 6 , 1153 - 1160
-
59)
- De Bonet, J.S.: `Multiresolution sampling procedure for analysis and synthesis of texture images', Proc. ACM SIGGRAPH, 1997, p. 361–368.
-
60)
- Efros, A.A., Freeman, W.T.: `Image quilting for texture synthesis and transfer', Proc. SIGGRAPH 2001, 2001.
-
61)
- A. Efros , T. Leung . Texture synthesis by a non-parametric sampling. Proc. IEEE Int. Conf. Comput. Vis. , 1033 - 1038
-
62)
- R.C. Gonzales , R.E. Woods . (1993) Digital image processing.
-
1)

Related content
