Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Geometrical-based algorithm for variational segmentation and smoothing of vector-valued images

Geometrical-based algorithm for variational segmentation and smoothing of vector-valued images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An optimisation method based on a nonlinear functional is considered for segmentation and smoothing of vector-valued images. An edge-based approach is proposed to initially segment the image using geometrical properties such as metric tensor of the linearly smoothed image. The nonlinear functional is then minimised for each segmented region to yield the smoothed image. The functional is characterised with a unique solution in contrast with the Mumford–Shah functional for vector-valued images. An operator for edge detection is introduced as a result of this unique solution. This operator is analytically calculated and its detection performance and localisation are then compared with those of the DroG operator. The implementations are applied on colour images as examples of vector-valued images, and the results demonstrate robust performance in noisy environments.

References

    1. 1)
      • L.A. Vese , S. Osher , N. Paragios . (2003) Multiphase object detection and image segmentation, Geometrical level set methods in imaging, vision, and graphics.
    2. 2)
      • G. Aubert , P. Kornprobst . (2002) Mathematical problems in image processing: partial differential equations and calculus of variations.
    3. 3)
      • L. Ambrosio , V.M. Tortorelli . Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. , 8 , 999 - 1036
    4. 4)
      • L.A. Vese , T.F. Chan . A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. , 3 , 271 - 293
    5. 5)
      • E. Kreyszig . (2006) Advanced engineering mathematics.
    6. 6)
      • A. Brook , R. Kimmel , N.A. Sochen . Variational restoration and edge detection for color images. J. Math. Imaging Vis. , 247 - 268
    7. 7)
      • M.M. Lipschutz . (1969) Theory and problems of differential geometry.
    8. 8)
      • J. Canny . A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 679 - 698
    9. 9)
      • T.F. Chan , L.A. Vese . Level set algorithm for minimising the Mumford–Shah functional in image processing. Proc. IEEE Workshop on Variational and Level Set Methods in Computer Vis. , 161 - 168
    10. 10)
      • S. Osher , J. Sethian . Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. , 12 - 49
    11. 11)
      • M. Hintermuller , W. Ring . An inexact-CG-type active contour approach for the minimization of the Mumford–Shah functional. J. Math. Imaging Vis. , 19 - 42
    12. 12)
      • D. Mumford , J. Shah . Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. , 4 , 577 - 688
    13. 13)
      • S. Mahmoodi , B.S. Sharif . Signal segmentation and denoising algorithm based on energy optimisation. Signal Process. , 9 , 1845 - 1851
    14. 14)
      • T.F. Chan , B.Y. Sandberg , L.A. Vese . Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. , 130 - 141
    15. 15)
      • A. Tsai , A. Yezzi , A.S. Willsky . Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation and magnification. IEEE Trans. Image Process. , 8 , 1169 - 1186
    16. 16)
      • J.A. Sethian . (1996) Level set methods: evolving interfaces in geometry, fluid mechanics, computer vision and material science.
    17. 17)
      • J.L. Morel , S. Solimini . (1995) Variational methods in image segmentation.
    18. 18)
      • S.O. Rice . Mathematical analysis of random noise. Bell Syst. Tech. J. , 46 - 156
    19. 19)
      • A.N. Tikhonov , V.Y. Arsenin , F. John . (1977) Solutions of ill-posed problems.
    20. 20)
      • L.D. Cohen . On active contour models and balloons. CVGIP, Image Underst. , 2 , 211 - 218
    21. 21)
      • V. Casellas , R. Kimmel , G. Sapiro . Geodesic active contours. Int. J. Comput. Vis. , 1 , 61 - 79
    22. 22)
      • L.I. Rudin , S. Osher , E. Fatemi . Nonlinear total variation based noise removal algorithms. Physica D , 259 - 268
    23. 23)
      • S. Mahmoodi , B.S. Sharif . A nonlinear variational method for signal segmentation and reconstruction using level set method. Signal Process. , 3496 - 3504
    24. 24)
      • M. Kass , A. Witkin , D. Terzopoulos . Snakes: active contour models. Int. J. Comput. Vis. , 321 - 331
    25. 25)
      • Canny, J.: `Finding edges and lines in images', 720, Technical Report, 1983.
    26. 26)
      • V. Caselles , R. Kimmel , G. Sapiro . (1995) Geodesic active contours, Proc. 5th Int. Conf. on Computer Vision.
    27. 27)
      • U.B. Manderscheid . (1991) Introduction to the calculus of variations.
    28. 28)
      • L. Ambrosio , V.M. Tortorelli . On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B(7) , 1 , 105 - 123
    29. 29)
      • P. Blomgren , T.F. Chan . Color TV: total variation methods for restoration of vector valued images. IEEE Trans. Image Process. , 3 , 304 - 309
    30. 30)
      • S. Mahmoodi , B.S. Sharif . Noise reduction, smoothing and time interval segmentation of noisy signals using an energy optimisation method. IEE Proc., Vis., Image Signal Process. , 2 , 101 - 108
    31. 31)
      • G. Sapiro , D.L. Ringach . Anisotropic diffusion of multi-valued images with applications to color filtering. IEEE Trans. Image Process. , 1582 - 1586
    32. 32)
      • G. Sapiro . Color snakes. Comput. Vis. Image Underst. , 2 , 247 - 253
    33. 33)
      • T.F. Chan , L.A. Vese . Active contours without edges. IEEE Trans. Image Process. , 2 , 266 - 277
    34. 34)
      • S. Di Zenzo . A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. , 116 - 125
    35. 35)
      • S. Mahmoodi , B.S. Sharif . Nonlinear optimisation method for image segmentation and noise reduction using geometrical intrinsic properties. Image Vis. Comput. , 202 - 209
    36. 36)
      • E. Kreyszig . (1978) Introductory functional analysis with applications.
    37. 37)
      • D.C. Kay . (1988) Tensor calculus.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr_20060218
Loading

Related content

content/journals/10.1049/iet-ipr_20060218
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address