Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Bottom-up spatiotemporal visual attention model for video analysis

Bottom-up spatiotemporal visual attention model for video analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The human visual system (HVS) has the ability to fixate quickly on the most informative (salient) regions of a scene and therefore reducing the inherent visual uncertainty. Computational visual attention (VA) schemes have been proposed to account for this important characteristic of the HVS. A video analysis framework based on a spatiotemporal VA model is presented. A novel scheme has been proposed for generating saliency in video sequences by taking into account both the spatial extent and dynamic evolution of regions. To achieve this goal, a common, image-oriented computational model of saliency-based visual attention is extended to handle spatiotemporal analysis of video in a volumetric framework. The main claim is that attention acts as an efficient preprocessing step to obtain a compact representation of the visual content in the form of salient events/objects. The model has been implemented, and qualitative as well as quantitative examples illustrating its performance are shown.

References

    1. 1)
    2. 2)
      • C.R. Bolles , H.H. Baker . Generalizing epipolar-plane image analysis on the spatio-temporal surface. Int. J. Comput. Vis. , 33 - 49
    3. 3)
      • S. Baluja , D.A. Pomerleau . Expectation-based selective attention for the visual monitoring and control of a robot vehicle. Robot. Auton. Syst. , 329 - 344
    4. 4)
      • Martins, F.C., Ding, W., Feig, E.: `Joint control of spatial quantization and temporal sampling for very low bit rate video', Proc. ICASSP, May 1997, p. 2072–2075.
    5. 5)
    6. 6)
      • N. Moenne-Loccoz , E. Bruno , S. Marchand-Maillet . Knowledge-based detection of events in video streams from salient regions of activity. Pattern Anal. Appl. , 4 , 422 - 429
    7. 7)
      • C. Koch , S. Ullman . Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. , 219 - 227
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • Rapantzikos, K., Tsapatsoulis, N.: `Enhancing the robustness of skin-based face detection schemes through a visual attention architecture', Proc. of the IEEE International Conf. on Image Processing (ICIP), September 2005, Genova, Italy.
    13. 13)
      • P.K. Kaiser , R.M. Boynton . (1996) Human color vision.
    14. 14)
      • Itti, L., Baldi, P.: `A principled approach to detecting surprising events in video', Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2005, p. 631–637.
    15. 15)
    16. 16)
      • E. Niebur , C. Koch , R. Parasuraman . (1998) Computational architectures for attention, The attentive brain.
    17. 17)
      • P. Maragos , V.K. Madisetti , D.B. Williams . (1998) Noise suppression,, The digital signal processing handbook.
    18. 18)
      • F. Porikli , Y. Wang . Automatic video object segmentation using volume growing and hierarchical clustering. EURASIP J. Appl. Signal Process. , 6 , 814 - 832
    19. 19)
      • T. Watanabe , Y. Sasaki , S. Miyauchi , B. Putz , N. Fujimaki , M. Nielsen , R. Takino , S. Miyakawa . Attention-regulated activity in human primary visual cortex. J. Neurophysiol. , 2218 - 2221
    20. 20)
      • Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y.: `Spatiotemporal visual attention architecture for video analysis', Proc. IEEE Int. Workshop On Multimedia Signal Processing (MMSP'04), 2004, p. 83–86.
    21. 21)
      • M. Pardàs , E. Sayrol . Motion estimation based tracking of active contours. Pattern Recognit. Lett. , 1447 - 1456
    22. 22)
      • C.-W. Ngo , T.-C. Pong , H.-J. Zhang . Motion analysis and segmentation through spatio-temporal slices processing. IEEE Trans. Image Process. , 3 , 341 - 355
    23. 23)
    24. 24)
    25. 25)
      • Liu, F., Picard, R.W.: `Finding periodicity in space and time', Proc. IEEE Int. Conf. Comput. Vis., 1998, p. 376–383.
    26. 26)
      • P. Joly , H.K. Kim . Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images. Signal Process. Image Commun. , 295 - 307
    27. 27)
    28. 28)
      • K. Rapantzikos , N. Tsapatsoulis . (2003) On the implementation of visual attention architectures, Tales of the disappearing computer.
    29. 29)
    30. 30)
    31. 31)
      • N. Otsu . A thresholding selection method from gray-scale histogram. IEEE Trans. Syst. Man Cybernet. , 62 - 66
    32. 32)
      • B. Jähne . (1991) Spatio-temporal image processing: theory and scientific applications.
    33. 33)
      • http://homepages.inf.ed.ac.uk/rbf/CAVIAR/EC Funded CAVIAR project/IST 2001 37540.
    34. 34)
      • A. Torralba . Contextual priming for object detection. Int. J. Comput. Vis. , 2 , 169 - 191
    35. 35)
      • http://www.cs.brown.edu/people/black/regression.html.
    36. 36)
    37. 37)
      • Rutishauer, U., Walther, D., Koch, C., Perona, P.: `Is bottom-up attention useful for object recognition?', CVPR'04, July 2004, p. 37–44.
    38. 38)
      • P.A. Brandley , M.W. Stentiford . Visual attention for region of interest coding in JPEG 2000. J. Vis. Commun. Image Represent. , 232 - 250
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • M.J. Black , P. Anan . The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. , 1 , 75 - 104
    43. 43)
      • H. Pashler . Attention and performance. Annu. Rev. Psychol. , 629 - 651
    44. 44)
      • E. Dickmanns , Blake , Yuille . (1992) Expectation-based dynamic scene understanding, Active vision.
    45. 45)
      • S. Sarkar , D. Majchrzak , K. Korimilli . Perceptual organization based computational model for robust segmentation of moving objects. Comput. Vis. Image Underst. , 3 , 141 - 170
    46. 46)
    47. 47)
      • E.H. Adelson , J. Bergen . Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. , 2 , 284 - 299
    48. 48)
      • B.K.P. Horn , B.G. Schunck . Determining optical flow. Artif. Intell. , 185 - 203
    49. 49)
      • A.M. Treisman , G. Gelade . A feature integration theory of attention. Cognit. Psychol. , 1 , 97 - 136
    50. 50)
      • J. Serra . (1992) Image analysis and mathematical morphology.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr_20060040
Loading

Related content

content/journals/10.1049/iet-ipr_20060040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address