Bottom-up spatiotemporal visual attention model for video analysis
Bottom-up spatiotemporal visual attention model for video analysis
- Author(s): K. Rapantzikos ; N. Tsapatsoulis ; Y. Avrithis ; S. Kollias
- DOI: 10.1049/iet-ipr:20060040
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): K. Rapantzikos 1 ; N. Tsapatsoulis 2 ; Y. Avrithis 1 ; S. Kollias 1
-
-
View affiliations
-
Affiliations:
1: School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, Greece
2: Department of Computer Science, University of Cyprus, Nicosia, Cyprus
-
Affiliations:
1: School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, Greece
- Source:
Volume 1, Issue 2,
June 2007,
p.
237 – 248
DOI: 10.1049/iet-ipr:20060040 , Print ISSN 1751-9659, Online ISSN 1751-9667
- « Previous Article
- Table of contents
- Next Article »
The human visual system (HVS) has the ability to fixate quickly on the most informative (salient) regions of a scene and therefore reducing the inherent visual uncertainty. Computational visual attention (VA) schemes have been proposed to account for this important characteristic of the HVS. A video analysis framework based on a spatiotemporal VA model is presented. A novel scheme has been proposed for generating saliency in video sequences by taking into account both the spatial extent and dynamic evolution of regions. To achieve this goal, a common, image-oriented computational model of saliency-based visual attention is extended to handle spatiotemporal analysis of video in a volumetric framework. The main claim is that attention acts as an efficient preprocessing step to obtain a compact representation of the visual content in the form of salient events/objects. The model has been implemented, and qualitative as well as quantitative examples illustrating its performance are shown.
Inspec keywords: image sequences; video signal processing
Other keywords: visual content; bottom-up spatiotemporal visual attention model; regions dynamic evolution; video sequences; video analysis; visual uncertainty; image-oriented computational model; saliency-based visual attention
Subjects: Optical, image and video signal processing; Video signal processing
References
-
-
1)
- L. Itti , C. Koch . A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. , 1489 - 1506
-
2)
- C.R. Bolles , H.H. Baker . Generalizing epipolar-plane image analysis on the spatio-temporal surface. Int. J. Comput. Vis. , 33 - 49
-
3)
- S. Baluja , D.A. Pomerleau . Expectation-based selective attention for the visual monitoring and control of a robot vehicle. Robot. Auton. Syst. , 329 - 344
-
4)
- Martins, F.C., Ding, W., Feig, E.: `Joint control of spatial quantization and temporal sampling for very low bit rate video', Proc. ICASSP, May 1997, p. 2072–2075.
-
5)
- C.R. Bolles , H.H. Baker , D.H. Mariont . Epipolar-plane image analysis: An approach to determining structure from motion. Int. J. Comput. Vis. , 7 - 55
-
6)
- N. Moenne-Loccoz , E. Bruno , S. Marchand-Maillet . Knowledge-based detection of events in video streams from salient regions of activity. Pattern Anal. Appl. , 4 , 422 - 429
-
7)
- C. Koch , S. Ullman . Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. , 219 - 227
-
8)
- A. Vetro , H. Sun , Y. Wang . MPEG-4 rate control for multiple video objects. IEEE Trans. Circuits Syst. Video Technol. , 186 - 199
-
9)
- L. Itti , C. Kock , E. Niebur . A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1254 - 1259
-
10)
- W. Yu , G. Sommer , K. Daniilidis . Three dimensional orientation signatures with conic kernel. Image Vis. Comput. , 5 , 447 - 458
-
11)
- J.L. Barron , D.J. Fleet , S.S. Beauchemin . Performance of optical flow techniques. Int. J. Comput. Vis. , 43 - 77
-
12)
- Rapantzikos, K., Tsapatsoulis, N.: `Enhancing the robustness of skin-based face detection schemes through a visual attention architecture', Proc. of the IEEE International Conf. on Image Processing (ICIP), September 2005, Genova, Italy.
-
13)
- P.K. Kaiser , R.M. Boynton . (1996) Human color vision.
-
14)
- Itti, L., Baldi, P.: `A principled approach to detecting surprising events in video', Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2005, p. 631–637.
-
15)
- P.J. Burt , E.H. Adelson . The Laplacian Pyramid as a compact image code. IEEE Trans. Commun. , 4 , 532 - 540
-
16)
- E. Niebur , C. Koch , R. Parasuraman . (1998) Computational architectures for attention, The attentive brain.
-
17)
- P. Maragos , V.K. Madisetti , D.B. Williams . (1998) Noise suppression,, The digital signal processing handbook.
-
18)
- F. Porikli , Y. Wang . Automatic video object segmentation using volume growing and hierarchical clustering. EURASIP J. Appl. Signal Process. , 6 , 814 - 832
-
19)
- T. Watanabe , Y. Sasaki , S. Miyauchi , B. Putz , N. Fujimaki , M. Nielsen , R. Takino , S. Miyakawa . Attention-regulated activity in human primary visual cortex. J. Neurophysiol. , 2218 - 2221
-
20)
- Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y.: `Spatiotemporal visual attention architecture for video analysis', Proc. IEEE Int. Workshop On Multimedia Signal Processing (MMSP'04), 2004, p. 83–86.
-
21)
- M. Pardàs , E. Sayrol . Motion estimation based tracking of active contours. Pattern Recognit. Lett. , 1447 - 1456
-
22)
- C.-W. Ngo , T.-C. Pong , H.-J. Zhang . Motion analysis and segmentation through spatio-temporal slices processing. IEEE Trans. Image Process. , 3 , 341 - 355
-
23)
- J. Crespo , W.R. Scaher , J. Serra , C. Gratin , F. Meyer . The flat zone approach: A general low-level region merging segmentation method. Signal Process. , 37 - 60
-
24)
- N. Peterfreund . Robust tracking of position and velocity with Kalman snakes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) , 6 , 564 - 569
-
25)
- Liu, F., Picard, R.W.: `Finding periodicity in space and time', Proc. IEEE Int. Conf. Comput. Vis., 1998, p. 376–383.
-
26)
- P. Joly , H.K. Kim . Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images. Signal Process. Image Commun. , 295 - 307
-
27)
- N.V. Patel , I.K. Sethi . Video shot detection and characterization for video databases. Pattern Recognit. , 4 , 583 - 592
-
28)
- K. Rapantzikos , N. Tsapatsoulis . (2003) On the implementation of visual attention architectures, Tales of the disappearing computer.
-
29)
- C.L. Huang , Y.T. Chen . Motion estimation method using a 3D steerable filter. Image Vis. Comput. , 21 - 32
-
30)
- K. Mikolajczyk , C. Schmid . Scale & affine invariant interest point detectors. Int. J. Comput. Vis. , 1 , 63 - 86
-
31)
- N. Otsu . A thresholding selection method from gray-scale histogram. IEEE Trans. Syst. Man Cybernet. , 62 - 66
-
32)
- B. Jähne . (1991) Spatio-temporal image processing: theory and scientific applications.
-
33)
- http://homepages.inf.ed.ac.uk/rbf/CAVIAR/EC Funded CAVIAR project/IST 2001 37540.
-
34)
- A. Torralba . Contextual priming for object detection. Int. J. Comput. Vis. , 2 , 169 - 191
-
35)
- http://www.cs.brown.edu/people/black/regression.html.
-
36)
- G. Tsechpenakis , K. Rapantzikos , N. Tsapatsoulis , S. Kollias . A snake model for object tracking in natural sequences. Signal Process. Image Commun. , 3 , 219 - 238
-
37)
- Rutishauer, U., Walther, D., Koch, C., Perona, P.: `Is bottom-up attention useful for object recognition?', CVPR'04, July 2004, p. 37–44.
-
38)
- P.A. Brandley , M.W. Stentiford . Visual attention for region of interest coding in JPEG 2000. J. Vis. Commun. Image Represent. , 232 - 250
-
39)
- J.-W. Lee , A. Vetro , Y. Wang , Y.-S. Ho . Bit allocation for MPEG-4 video coding with spatio-temporal tradeoffs. IEEE Trans. Circuits Syst. Video Technol. , 6 , 488 - 502
-
40)
- W.T. Freeman , E.H. Adelson . The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. , 891 - 906
-
41)
- J.K. Tsotsos , S.M. Culhane , W.Y.K. Wai , Y. Lai , N. Davis , F. Nuflo . Modeling visual attention via selective tuning. Artif. Intell. , 507 - 545
-
42)
- M.J. Black , P. Anan . The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. , 1 , 75 - 104
-
43)
- H. Pashler . Attention and performance. Annu. Rev. Psychol. , 629 - 651
-
44)
- E. Dickmanns , Blake , Yuille . (1992) Expectation-based dynamic scene understanding, Active vision.
-
45)
- S. Sarkar , D. Majchrzak , K. Korimilli . Perceptual organization based computational model for robust segmentation of moving objects. Comput. Vis. Image Underst. , 3 , 141 - 170
-
46)
- P. Salembier , J. Serra . Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. , 8 , 1153 - 1160
-
47)
- E.H. Adelson , J. Bergen . Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. , 2 , 284 - 299
-
48)
- B.K.P. Horn , B.G. Schunck . Determining optical flow. Artif. Intell. , 185 - 203
-
49)
- A.M. Treisman , G. Gelade . A feature integration theory of attention. Cognit. Psychol. , 1 , 97 - 136
-
50)
- J. Serra . (1992) Image analysis and mathematical morphology.
-
1)
Related content
