Grey level reduction for segmentation, threshholding and binarisation of images based on optimal partitioning on an interval

Access Full Text

Grey level reduction for segmentation, threshholding and binarisation of images based on optimal partitioning on an interval

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optimal reduction of the number of grey levels present in an image is a fundamental problem in segmentation, classification, lossy compression, quantisation, inspection and computer vision. We present a new algorithm based on dynamic programming and optimal partitioning of the image data space, or its histogram representation. The algorithm allows the reduction of the number of grey levels for an image in a fine to coarse fashion, starting with the original grey levels present in the image and all the way down to two grey levels that simply create a binarised version of the original image. The algorithm can also be used to find a reduced number of grey levels in a natural way without forcing a specific number ahead of time. Application of the algorithm is demonstrated in image segmentation, multi-level thresholding and binarisation, and is shown to give very good results compared to many of the existing methods.

Inspec keywords: dynamic programming; image segmentation

Other keywords: optimal partitioning; computer vision; grey level reduction; threshholding; binarisation; image data space; segmentation; quantisation; images; dynamic programming; histogram representation; inspection; lossy compression

Subjects: Optimisation techniques; Optimisation techniques; Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • S. Reddi , S. Rudin , H. Keshavan . An optimal multiple threshold scheme for image segmentation. IEEE Trans. Syst. Man Cybern. , 661 - 665
    2. 2)
    3. 3)
      • J.N. Kapur , P.K. Sahoo , A.K.C. Wong . A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. , 3 , 273 - 285
    4. 4)
    5. 5)
      • C.C. Chang , C.H. Chang , S.Y. Hwang . A connectionist approach for thresholding. Proc. Int. Conf. Pattern Recognit. , 522 - 525
    6. 6)
    7. 7)
      • N. Otsu . A thresholding selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. , 1 , 62 - 66
    8. 8)
      • R. Vidal . (1993) Optimal partition of an interval, Applied simulated annealing.
    9. 9)
      • L. Lam , S. Lee , C. Suen . Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. , 869 - 885
    10. 10)
    11. 11)
      • S. Marchand-Maillet . (2000) Binary digital image processing.
    12. 12)
    13. 13)
      • D.-M. Tsai . A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognit. Lett. , 6 , 653 - 666
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • A.H. Dekker . Kohonen neural networks for optimal color quantisation network. Comput. Neural Syst. , 351 - 367
    20. 20)
      • R. Bellman . (1957) Dynamic programming.
    21. 21)
      • N. Papamarkos , B. Gatos . A new approach for multithreshold selection. Comput. Vis. Graph. Image Process. Graph. Models Image Process. , 5 , 357 - 370
    22. 22)
      • M. Sezgin , B. Sankur . Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging , 146 - 168
    23. 23)
      • W.K. Leow , R. Li . Adaptive binning and dissimilarity measure for image retrieval and classification. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) , 234 - 239
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • Alginahi, Y., Sid-Ahmed, M.A., Ahmadi, M.: `Local thresholding of composite documents using multi-layer preceptron neural network', Proc. 2004 IEEE Midwest Symp. on Circuits and Systems, July 2004, Hiroshima, Japan, p. 209–212.
    28. 28)
    29. 29)
    30. 30)
      • N.R. Pal , S.K. Pal . Object-background segmentation using new definitions of entropy. IEE Proc., Comput. Digital Tech. , 4 , 284 - 295
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr_20050262
Loading

Related content

content/journals/10.1049/iet-ipr_20050262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading