Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synthetic medical image generator for data augmentation and anonymisation based on generative adversarial network for glioblastoma tumors growth prediction

Prediction methods of glioblastoma tumours growth constitute a hard task due to the lack of medical data, which is mostly related to the patients' privacy, the cost of collecting a large medical data set, and the availability of related notations by experts.In this study, the authors propose a synthetic medical image generator (SMIG) with the purpose of generating synthetic data based on the generative adversarial network in order to provide anonymised data. In addition, to predict the glioblastoma multiform tumour growth the authors developed a tumour growth predictor based on end to end convolution neural network architecture that allows training on a public data set from the cancer imaging archive (TCIA), combined with the generated synthetic data. The authors also highlighted the impact of implicating a synthetic data generated using SMIG as a data augmentation tool. Despite small data size provided by TCIA data set, the obtained results demonstrate valuable tumour growth prediction accuracy.

References

    1. 1)
      • 12. Wei, W., Zhou, B., Połap, D., et al: ‘A regional adaptive variational pde model for computed tomography image reconstruction’, Pattern Recognit., 2019, 92, pp. 6481.
    2. 2)
      • 18. Beyerlein, P.: ‘Discriminative model combination’. 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proc., Santa Barbara, CA, USA, 1997, pp. 238245.
    3. 3)
      • 11. Gaw, N., Hawkins-Daarud, A., Hu, L.S., et al: ‘Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric mri’, Sci. Rep., 2019, 9, (1), pp. 19.
    4. 4)
      • 16. Woźniak, M., Połap, D., Capizzi, G., et al: ‘Small lung nodules detection based on local variance analysis and probabilistic neural network’, Comput. Methods Programs Biomed., 2018, 161, pp. 173180.
    5. 5)
      • 9. Swanson, K.R., Bridge, C., Murray, J.D., et al: ‘Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion’, J. Neurol. Sci., 2003, 216, (6), pp. 110.
    6. 6)
      • 8. Swanson, K.R., Alvord, E.C.Jr., Murray, J.D.: ‘A quantitative model for differential motility of gliomas in grey and white matter’, Cell Proliferation, 2000, 33, (5), pp. 317329.
    7. 7)
      • 4. Murray, J.D.: ‘Mathematical biology: I. An introduction’, vol. 17' (Springer Science & Business Media, Germany, 2007).
    8. 8)
      • 10. Morris, M., Greiner, R., Sander, J., et al: ‘Learning a classification-based glioma growth model using MRI data’, JCP, 2006, 1, (10), pp. 2131.
    9. 9)
      • 24. Iqbal, T., Ali, H.: ‘Generative adversarial network for medical images (mi-gan)’, J. Med. Syst., 2018, 42, (11), p. 231.
    10. 10)
      • 37. Fennema-Notestine, C., Ozyurt, I.B., Clark, C.P., et al: ‘Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location’, Hum. Brain Mapp., 2006, 27, (2), pp. 99113.
    11. 11)
      • 14. Rudin, L.I., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’, Phys. D, Nonlinear Phenom., 1992, 60, (1-4), pp. 259268.
    12. 12)
      • 15. Capizzi, G., Sciuto, G.L., Napoli, C., et al: ‘Small lung nodules detection based on fuzzy-logic and probabilistic neural network with bio-inspired reinforcement learning’, IEEE Trans. Fuzzy Syst., 2020, 28, pp. 11781189.
    13. 13)
      • 22. Li, S.C.-X., Jiang, B., Marlin, B.: ‘Misgan: learning from incomplete data with generative adversarial networks’, arXiv preprint arXiv:1902.09599, 2019.
    14. 14)
      • 31. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al: ‘Generative adversarial nets’. Advances in Neural Information Processing Systems, Montreal, Canada, 2014, pp. 26722680.
    15. 15)
      • 39. Smith, S.M.: ‘Fast robust automated brain extraction’, Hum. Brain Mapp., 2002, 17, (3), pp. 143155.
    16. 16)
      • 13. Sparrow, T.G., Williams, B.G., Rao, C.N.R., et al: ‘L3/l2 white-line intensity ratios in the electron energy-loss spectra of 3D transition-metal oxides’, Chem. Phys. Lett., 1984, 108, (6), pp. 547550.
    17. 17)
      • 42. Antoine Maintz, J.B., Viergever, M.A: ‘An overview of medical image registration methods’. Symp. of the Belgian Hospital Physicists Association (SBPH/BVZF), Gent, Belgium, 1996, vol. 12, pp. 122.
    18. 18)
      • 25. Han, C., Hayashi, H., Rundo, L., et al: ‘Gan-based synthetic brain mr image generation’. 2018 IEEE 15th Int. Symp. on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 2018, pp. 734738.
    19. 19)
      • 2. Smoll, N.R., Schaller, K., Gautschi, O.P.: ‘Long-term survival of patients with glioblastoma multiforme (GBM)’, J. Clin. Neurosci., 2013, 20, (2), pp. 670675.
    20. 20)
      • 45. Yeghiazaryan, V., Voiculescu, I.D.: ‘Family of boundary overlap metrics for the evaluation of medical image segmentation’, J. Med. Imaging, 2018, 5, (1), p. 015006.
    21. 21)
      • 7. Swanson, K.R., Rostomily, R.C., Alvord, E.C.Jr.: ‘A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle’, British J. Cancer, 2008, 98, (8), pp. 113119.
    22. 22)
      • 20. Xu, T., Zhang, P., Huang, Q., et al: ‘Attngan: fine-grained text to image generation with attentional generative adversarial networks’. Proc. IEEE Conf. on Comput. Vision and Pattern Recognition, Salt Lake City, UT, United States, 2018, pp. 13161324.
    23. 23)
      • 19. Wang, X., Gupta, A.: ‘Generative image modeling using style and structure adversarial networks’. European Conf. Comput. Vision, Amsterdam, The Netherlands, 2016, pp. 318335.
    24. 24)
      • 32. Isola, P., Zhu, J.-Y., Zhou, T., et al: ‘Image-to-image translation with conditional adversarial networks’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 11251134.
    25. 25)
      • 28. Bowles, C., Chen, L., Guerrero, R., et al: ‘Gan augmentation: Augmenting training data using generative adversarial networks’, arXiv preprint arXiv:1810.10863, 2018.
    26. 26)
      • 23. Frid-Adar, M., Diamant, I., Klang, E., et al: ‘Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification’, Neurocomputing, 2018, 321, pp. 321331.
    27. 27)
      • 27. Shin, H.-C., Tenenholtz, N.A., Rogers, J.K., et al: ‘Medical image synthesis for data augmentation and anonymization using generative adversarial networks’. Int. Workshop on Simulation and Synthesis in Medical Imaging, Granada, Spain, 2018, pp. 111.
    28. 28)
      • 33. Goodfellow, I., Bengio, Y., Courville, A.: ‘Deep learning’ (MIT Press, UK, 2016).
    29. 29)
      • 6. Swanson, K.R., Harpold, H.L.P, Peacock, D.L., et al: ‘Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle’, Clin. Oncol., 2008, 20, (7), pp. 301308.
    30. 30)
      • 21. Antipov, G., Baccouche, M., Dugelay, J.-L.: ‘Face aging with conditional generative adversarial networks’. 2017 IEEE International Conference on Image Processing (ICIP), New York, NY, USA, 2017, pp. 20892093.
    31. 31)
      • 34. Maskin, E.: ‘Nash equilibrium and welfare optimality’, Rev. Econ. Stud., 1999, 66, (1), pp. 2338.
    32. 32)
      • 1. Tamimi, A.F., Juweid, M.: ‘Epidemiology and outcome of glioblastoma’ (Exon Publications, Australia, 2017), pp. 143153.
    33. 33)
      • 36. Cheng, Z., Sun, H., Takeuchi, M., et al: ‘Performance comparison of convolutional autoencoders, generative adversarial networks and super-resolution for image compression’. CVPR Workshops, Salt Lake City, UT, USA, 2018, pp. 26132616.
    34. 34)
      • 35. Mao, X., Li, Q., Xie, H., et al: ‘Multi-class generative adversarial networks with the l2 loss function’, arXiv preprint arXiv:1611.04076, 2016, vol. 5, pp. 10577149.
    35. 35)
      • 5. Jackson, P.R., Juliano, J., Hawkins-Daarud, A., et al: ‘Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice’, Bull. Math. Biol., 2015, 77, (9), pp. 846856.
    36. 36)
      • 44. Petersen, R.C., Aisen, P.S., Beckett, L.A., et al: ‘Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization’, Neurology, 2010, 74, (3), pp. 201209.
    37. 37)
      • 26. Geman, D., Geman, S., Hallonquist, N., et al: ‘Visual turing test for computer vision systems’, Proc. Natl. Acad. Sci., 2015, 112, (12), pp. 36183623.
    38. 38)
      • 3. Lima, F.R.S., Kahn, S.A., Soletti, R.C., et al: ‘Glioblastoma: therapeutic challenges, what lies ahead’, Biochim. Biophys. Acta (BBA)-Rev. Cancer, 2012, 1826, (3), pp. 338349.
    39. 39)
      • 30. Clark, K., Vendt, B., Smith, K., et al: ‘The cancer imaging archive (TCIA), pp. maintaining and operating a public information repository’, J. Digit. Imaging, 2013, 26, (6), pp. 10451057.
    40. 40)
      • 40. Dogdas, B., Shattuck, D.W., Leahy, R.M.: ‘Segmentation of skull and scalp in 3-D human MRI using mathematical morphology’, Hum. Brain Mapp., 2005, 26, (4), pp. 273285.
    41. 41)
      • 41. Bhushan, C.: Correction, coregistration and connectivity analysis of multi-contrast brain MRI’. 2016, PhD thesis, University of Southern California.
    42. 42)
      • 29. Yi, X., Walia, E., Babyn, P.: ‘Generative adversarial network in medical imaging: a review’, Med. Image Anal., 2019, 58, p. 101552.
    43. 43)
      • 17. van den Oord, A., Dieleman, S., Zen, H., et al: 2016‘Wavenet: a generative model for raw audio’, arXiv preprint arXiv:1609.03499.
    44. 44)
      • 38. Woolrich, M.W., Jbabdi, S., Patenaude, B., et al: ‘Bayesian analysis of neuroimaging data in FSL’, Neuroimage, 2009, 45, (1), pp. S173S186.
    45. 45)
      • 43. Bağcı, U., Udupa, J.K., Bai, L.: ‘The role of intensity standardization in medical image registration’, Pattern Recognit. Lett., 2010, 31, (4), pp. 315323.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1141
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address