Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free MaskHunter: real-time object detection of face masks during the COVID-19 pandemic

Due to the COVID-19 pandemic at present, it is necessary to detect whether pedestrians in public places wear face masks or not for preventing the spread of novel coronavirus. The pedestrian flow in public places is large, and it puts forward higher requirements for the accuracy and speed of real-time mask detection. Improving the face mask detection effect especially in the night environment is a challenging problem. A novel object detector namely MaskHunter is proposed in this study for the real-time mask detection. Specifically, the authors propose novel effective structures of backbone, neck and prediction head based on YOLOv4 series, which achieves the state-of-the-art performance and a novel improved Mosaic data augmentation method. Moreover, they propose a novel mask-guided module to enhance the discrimination ability of face mask especially in the night environment. As a consequent, experiments show that MaskHunter achieves better detection performance for real-time mask detection compared with other obtained models in this scenario.

References

    1. 1)
      • 27. Zhang, Z., He, T., Zhang, H., et al: ‘Bag of freebies for training object detection neural networks’, arXiv preprint arXiv:1902.04103, 2019.
    2. 2)
      • 39. Liu, S., Qi, L., Qin, H., et al: ‘Path aggregation network for instance segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 87598768.
    3. 3)
      • 21. Liu, L., Ouyang, W., Wang, X., et al: ‘Deep learning for generic object detection: A survey’, Int. J. Comput. Vis., 2020, 128, (2), pp. 261318.
    4. 4)
      • 3. Öztürk, Ş, Özkaya, U., Barstuğan, M.: ‘Classification of coronavirus (COVID-19) from X-ray and CT images using shrunken features’, Int. J. Imaging Syst. Technol., 2020, doi: 10.1002/ima.22469.
    5. 5)
      • 22. Minaee, S., Boykov, Y., Porikli, F., et al: ‘Image segmentation using deep learning: A survey’, arXiv preprint arXiv:2001.05566, 2020.
    6. 6)
      • 57. Jia, Z., Maggioni, M., Staiger, B., et al: ‘Dissecting the NVIDIA volta GPU architecture via microbenchmarking’, arXiv preprint arXiv:1804.06826, 2018.
    7. 7)
      • 41. Tan, M., Pang, R., Le, Q.V.: ‘Efficientdet: scalable and efficient object detection’. Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020, pp. 1078110790.
    8. 8)
      • 38. He, K., Zhang, X., Ren, S., et al: ‘Spatial pyramid pooling in deep convolutional networks for visual recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (9), pp. 19041916.
    9. 9)
      • 40. Huang, Z., Wang, J., Fu, X., et al: ‘DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection’, Inf. Sci., 2020, 522, pp. 241258.
    10. 10)
      • 13. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp. 436444.
    11. 11)
      • 19. Redmon, J., Divvala, S., Girshick, R., et al: ‘You only look once: unified, real-time object detection’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 779788.
    12. 12)
      • 54. Nie, J., Anwer, R.M., Cholakkal, H., et al: ‘Enriched feature guided refinement network for object detection’. Proc. of the IEEE Int. Conf. on Computer Vision, Long Beach, CA, USA, 2019, pp. 95379546.
    13. 13)
      • 17. Ren, S., He, K., Girshick, R., et al: ‘‘Faster r-cnn: towards real-time object detection with region proposal networks’’, Adv. Neural. Inf. Process. Syst., 2016, pp. 9199, arXiv:1506.01497.
    14. 14)
      • 18. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 580587.
    15. 15)
      • 47. Ge, S., Li, J., Ye, Q., et al: ‘Detecting masked faces in the wild with LLE-CNNs’. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.
    16. 16)
      • 56. Ramachandran, P., Zoph, B., Le, Q.V.: ‘Searching for activation functions’, arXiv preprint arXiv:1710. 05941, 2017.
    17. 17)
      • 8. Liu, W., Wen, Y., Yu, Z., et al: ‘Sphereface: deep hypersphere embedding for face recognition’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 212220.
    18. 18)
      • 5. Kannan, S., Subbaram, K., Ali, S., et al: ‘The role of artificial intelligence and machine learning techniques: race for COVID-19 vaccine’, Arch. Clin. Infect. Dis., 2020, 15, (2), pp. 23452641.
    19. 19)
      • 51. Kisantal, M., Wojna, Z., Murawski, J., et al: ‘Augmentation for small object detection’, arXiv preprint arXiv:1902.07296, 2019.
    20. 20)
      • 32. Lin, T.Y., Dollár, P., Girshick, R., et al: ‘Feature pyramid networks for object detection’. Proc. of the IEEE Conf. on computer vision and pattern recognition, Honolulu, HI, USA, 2017, pp. 21172125.
    21. 21)
      • 1. Huang, C., Wang, Y., Li, X., et al: ‘Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China’, The Lancet, 2020, 395, (10223), pp. 497506.
    22. 22)
      • 25. Qiu, H., Ma, Y., Li, Z., et al: ‘Borderdet: border feature for dense object detection’. European Conf. on Computer Vision, Glasgow, UK, 2020.
    23. 23)
      • 10. Deng, J., Guo, J., Liu, T., et al: ‘Sub-center ArcFace: boosting face recognition by large-scale noisy web faces’. European Conf. on Computer Vision, 2020.
    24. 24)
      • 53. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: ‘Scaled-YOLOv4: scaling cross stage partial network’, arXiv preprint arXiv:2011.08036, 2020.
    25. 25)
      • 24. Tian, Z., Shen, C., Chen, H., et al: ‘Fcos: fully convolutional one-stage object detection’. Proc. of the IEEE int. Conf. on Computer Vision, Seoul, Republic of Korea, 2019, pp. 96279636.
    26. 26)
      • 36. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1), pp. 19291958.
    27. 27)
      • 50. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., et al: ‘Albumentations: fast and flexible image augmentations’, Information, 2020, 11, (2), p. 125.
    28. 28)
      • 2. Li, L., Qin, L., Xu, Z., et al: ‘Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT’, Radiology, 2020, 296, (3),.
    29. 29)
      • 28. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.
    30. 30)
      • 23. Li, Y., Chen, Y., Wang, N., et al: ‘Scale-aware trident networks for object detection’. Proc. of the IEEE int. Conf. on Computer Vision, Long Beach, CA, USA, 2019, pp. 60546063.
    31. 31)
      • 31. Huang, G., Liu, Z., Van Der Maaten, L., et al: ‘Densely connected convolutional networks’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 47004708.
    32. 32)
      • 30. Xie, S., Girshick, R., Dollár, P., et al: ‘Aggregated residual transformations for deep neural networks’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 14921500.
    33. 33)
      • 7. Deng, J., Guo, J., Xue, N., et al: ‘Arcface: additive angular margin loss for deep face recognition’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 46904699.
    34. 34)
      • 15. Ciaparrone, G., Sánchez, F.L., Tabik, S., et al: ‘Deep learning in video multi-object tracking: A survey’, Neurocomputing, 2020, 381, pp. 6188.
    35. 35)
      • 35. Ghiasi, G., Lin, T.Y., Le, Q.V.: ‘Dropblock: A regularization method for convolutional networks’, Adv. Neural. Inf. Process. Syst., 2018, 31, pp. 1072710737.
    36. 36)
      • 14. Grigorescu, S., Trasnea, B., Cocias, T., et al: ‘A survey of deep learning techniques for autonomous driving’, J. Field Robot., 2020, 37, (3), pp. 362386.
    37. 37)
      • 45. Wu, Y., Chen, Y., Yuan, L., et al: ‘Rethinking classification and localization for object detection’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2020, pp. 1018610195.
    38. 38)
      • 12. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: ‘YOLOv4: optimal speed and accuracy of object detection’, arXiv preprint arXiv:2004.10934, 2020.
    39. 39)
      • 16. Tian, Y., Yang, G., Wang, Z., et al: ‘Apple detection during different growth stages in orchards using the improved YOLO-V3 model’, Comput. Electron. Agric., 2019, 157, pp. 417426.
    40. 40)
      • 52. Redmon, J., Farhadi, A.: ‘Yolov3: an incremental improvement’, arXiv preprint arXiv:1804.02767, 2018.
    41. 41)
      • 43. Chi, C., Zhang, S., Xing, J., et al: ‘Pedhunter: occlusion robust pedestrian detector in crowded scenes’. AAAI Conf. on Artificial Intelligence, New York, NY, USA, 2020, pp. 1063910646.
    42. 42)
      • 11. Elmahmudi, A., Ugail, H.: ‘Deep face recognition using imperfect facial data’, Future Gener. Comput. Syst., 2019, 99, pp. 213225.
    43. 43)
      • 6. Cheng, V.C.C., Wong, S.C., Chuang, V.W.M., et al: ‘The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2’, J. Infection, 2020, 81, (1), pp. 107114.
    44. 44)
      • 34. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., et al: ‘CSPNet: A new backbone that can enhance learning capability of CNN’. Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops, 2020, pp. 390391.
    45. 45)
      • 29. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770778.
    46. 46)
      • 55. Du, X., Lin, T.Y., Jin, P., et al: ‘Spinenet: learning scale-permuted backbone for recognition and localization’. Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020, pp. 1159211601.
    47. 47)
      • 26. Duan, K., Xie, L., Qi, H., et al: ‘Corner proposal network for anchor-free, two-stage object detection’. European Conf. on Computer Vision, Glasgow, UK, 2020.
    48. 48)
      • 9. Wang, H., Wang, Y., Zhou, Z., et al: ‘Cosface: large margin cosine loss for deep face recognition’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 52655274.
    49. 49)
      • 37. DeVries, T., Taylor, G.W.: ‘Improved regularization of convolutional neural networks with cutout’, arXiv preprint arXiv:1708.04552, 2017.
    50. 50)
      • 49. Russell, B.C., Torralba, A., Murphy, K.P., et al: ‘Labelme: a database and web-based tool for image annotation’, Int. J. Comput. Vis., 2008, 77, (1–3), pp. 157173.
    51. 51)
      • 20. Liu, W., Anguelov, D., Erhan, D., et al: ‘SSD: single shot MultiBox detector’. European Conf. on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 2137.
    52. 52)
      • 33. Redmon, J., Farhadi, A.: ‘YOLO9000: better, faster, stronger’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 72637271.
    53. 53)
      • 48. Yang, S., Luo, P., Loy, C.C., et al: ‘Wider face: A face detection benchmark’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 55255533.
    54. 54)
      • 46. He, K., Gkioxari, G., Dollár, P., et al: ‘Mask r-cnn’. Proc. of the IEEE int. Conf. on Computer Vision, Honolulu, HI, USA, 2017, pp. 29612969.
    55. 55)
      • 44. Neumann, L., Karg, M., Zhang, S., et al: ‘Nightowls: A pedestrians at night dataset’. Asian Conf. on Computer Vision, Perth, Australia, 2018, pp. 691705.
    56. 56)
      • 42. Misra, D.: ‘Mish: a self-regularized non-monotonic neural activation function’, arXiv preprint arXiv:1908.08681, 2019.
    57. 57)
      • 4. Vaishya, R., Javaid, M., Khan, I.H., et al: ‘Artificial intelligence (AI) applications for COVID-19 pandemic’, Diab. Metab. Syndrome: Clin. Res. Rev., 2020, 14, (4), pp. 337339.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1119
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address