access icon free Reversible data hiding in encrypted images for coding channel based on adaptive steganography

In this study, a novel reversible data hiding (RDH) in encrypted domain scheme for coding channel based on sliding-block segmentation and adaptive steganography is proposed. The proposed scheme enriches the residual information with as little additional encryption information as possible to improve the testing error rate of a steganalyser by sliding-block segmentation with bit stream encryption. The specific encryption process effectively weakens the correlation between the adjacent pixels and minimises the size of key stream bits. The encryption key can be further embedded in the channel code stream before transmitted in the channel. Experimental analysis shows that the image encrypted by the proposed RDH scheme can achieve a peak-signal-to-noise ratio of >50 dB, as the payload is 0.5 bits per pixel (bpp). In terms of security performance, compared with the state-of-the-art methods, their method has a higher testing error rate when the steganalyser is utilised. Even if the payload is 0.5 bpp, the testing error rate is >0.25.

Inspec keywords: image coding; data compression; cryptography; data encapsulation; channel coding; steganography

Other keywords: adaptive steganography; bit stream encryption; RDH scheme; noise figure 50.0 dB; key stream bits; higher testing error rate; sliding-block segmentation; encrypted images; specific encryption process; additional encryption information; peak-signal-to-noise ratio; encryption key; novel reversible data hiding; adjacent pixels; encrypted domain scheme; channel code stream; residual information

Subjects: Data security; Computer vision and image processing techniques; Image and video coding; Cryptography

References

    1. 1)
      • 7. Fridrich, J., Kodovsky, J.: ‘Rich models for steganalysis of digital images’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (3), pp. 868882.
    2. 2)
      • 25. Ge, H., Chen, Y., Qian, Z., et al: ‘A high capacity multi-level approach for reversible data hiding in encrypted images’, IEEE Trans. Circuits Syst. Video Technol., 2019, 29, (8), pp. 22852295.
    3. 3)
      • 5. Pevny, T., Filler, T., Bas, P.: ‘Using high-dimensional image models to perform highly undetectable steganography’. Proc. Int. Workshop Information Hiding Calgary, AB, Canada, June 2010, pp. 161177.
    4. 4)
      • 12. Sedighi, V., Cogranne, R., Fridrich, J.: ‘Content-adaptive steganography by minimizing statistical detectability’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (2), pp. 221234.
    5. 5)
      • 16. Dragoi, I., Coltuc, D.: ‘On local prediction based reversible watermarking’, IEEE Trans. Image Process., 2015, 24, (4), pp. 12441246.
    6. 6)
      • 22. Qian, Z., Zhang, X.: ‘Reversible data hiding in encrypted images with distributed source encoding’, IEEE Trans. Circuits Syst. Video Technol., 2016, 26, (4), pp. 636646.
    7. 7)
      • 24. Huang, F.J., Huang, J.W., Shi, Y.Q.: ‘New framework for reversible data hiding in encrypted domain’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (12), pp. 27772789.
    8. 8)
      • 30. Amini, M., Sadreazami, H., Ahmad, M.O., et al: ‘A channel-dependent statistical watermark detector for color images’, IEEE Trans. Multimed., 2019, 21, (1), pp. 6573.
    9. 9)
      • 17. Caciula, I., Coanda, H.G., Coltuc, D.: ‘Multiple moduli prediction error expansion reversible data hiding’, Signal Process. Image Commun., 2019, 71, pp. 120127.
    10. 10)
      • 1. Yu, X., Chen, K., Wang, Y., et al: ‘Robust adaptive steganography based on generalized dither modulation and expanded embedding domain’, Signal Process., 2020, 168, p. 107343.
    11. 11)
      • 28. Filler, T., Judas, J., Fridrich, J.: ‘Minimizing additive distortion in steganography using syndrome-trellis codes’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (3), pp. 920935.
    12. 12)
      • 4. Su, A., Ma, S., Zhao, X.: ‘Fast and secure steganography based on J-UNIWARD’, IEEE Signal Process. Lett., 2020, 27, pp. 221225.
    13. 13)
      • 29. Zhang, T., Li, W.X., Zhang, Y., et al: ‘Steganalysis of LSB matching based on statistical modeling of pixel difference distributions’, Inf. Sci., 2010, 180, (23), pp. 46854694.
    14. 14)
      • 10. Li, B., Wang, M., Huang, J.W., et al: ‘A new cost function for spatial image steganography’. 2014 IEEE Int. Conf. Image Process, Paris, France, October 2014, pp. 42064210.
    15. 15)
      • 6. Pevny, T., Bas, P., Fridrich, J.: ‘Steganalysis by subtractive pixel adjacency matrix’, IEEE Trans. Inf. Forensics Sec., 2010, 5, (2), pp. 215224.
    16. 16)
      • 8. Holub, V., Fridrich, J.: ‘Designing steganographic distortion using directional filters’. 2012 IEEE Int. Workshop on Information Forensics and Security (WIFS), Costa Adeje, Tenerife, Spain, December 2012, pp. 234239.
    17. 17)
      • 26. Lee, S., Baxley, R.J., Weitnauer, M.A., et al: ‘Achieving undetectable communication’, IEEE J. Sel. Top. Signal Process., 2015, 9, (7), pp. 11951205.
    18. 18)
      • 3. Sharifzadeh, M., Aloraini, M., Schonfeld, D.: ‘Adaptive batch size image merging steganography and quantized Gaussian image steganography’, IEEE Trans. Inf. Forensics Sec., 2020, 15, pp. 867879.
    19. 19)
      • 20. Ma, K.D., Zhang, W.M., Zhao, X.F., et al: ‘Reversible data hiding in encrypted images by reserving room before encryption’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (3), pp. 553562.
    20. 20)
      • 14. Celik, M.U., Sharma, G., Tekalp, A.M.: ‘Lossless watermarking for image authentication: a new framework and an implementation’, IEEE Trans. Image Process., 2006, 15, (4), pp. 10421049.
    21. 21)
      • 21. Zhang, W.M., Ma, K.D., Yu, N.H.: ‘Reversibility improved data hiding in encrypted images’, Signal Process., 2014, 94, pp. 118127.
    22. 22)
      • 2. Yang, J., Ruan, D., Huang, J., et al: ‘An embedding cost learning framework using GAN’, IEEE Trans. Inf. Forensics Sec., 2020, 15, pp. 839851.
    23. 23)
      • 27. He, B., Yan, S.H., Zhou, X.Y., et al: ‘On covert communication with noise uncertainty’, IEEE Commun. Lett., 2017, 21, (4), pp. 941944.
    24. 24)
      • 19. Zhang, X.P.: ‘Separable reversible data hiding in encrypted image’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 826832.
    25. 25)
      • 11. Fridrich, J., Kodovsky, J.: ‘Multivariate Gaussian model for designing additive distortion for steganography’. 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, British Columbia, Canada, May 2013, pp. 29492953.
    26. 26)
      • 18. Zhang, X.P.: ‘Reversible data hiding in encrypted image’, IEEE Signal Process. Lett., 2011, 18, (4), pp. 255258.
    27. 27)
      • 15. Chen, H., Ni, J., Hong, W., et al: ‘Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering’, Signal Process. Image Commun., 2016, 46, pp. 116.
    28. 28)
      • 13. Yi, S., Zhou, Y.: ‘Binary-block embedding for reversible data hiding in encrypted images’, Signal Process., 2017, 133, pp. 4051.
    29. 29)
      • 23. Cao, X., Du, L., Wei, X., et al: ‘High capacity reversible data hiding in encrypted images by patch-level sparse representation’, IEEE Trans. Cybern., 2016, 46, (5), pp. 11321143.
    30. 30)
      • 9. Holub, V., Fridrich, J.: ‘Digital image steganography using universal distortion’. 1st ACM Workshop on Information Hiding and Multimedia Security, Montpellier, France, June 2013, pp. 5968.
    31. 31)
      • 32. Yi, S., Zhou, Y., Hua, Z.: ‘Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion’, Signal Process. Image Commun., 2018, 64, pp. 7888.
    32. 32)
      • 31. Kodovsky, J., Fridrich, J., Holub, V.: ‘Ensemble classifiers for steganalysis of digital media’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 432444.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1105
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading