access icon free Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson's disease: a review

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that is increasingly applied to several medical diagnosis tasks, including a wide range of diseases. Importantly, various ML models were developed to address the complexity of Parkinson's Disease (PD) diagnosis. PD is a neurodegenerative disease characterized by motor and non-motor disorders where its syndromes affect the daily lives of patients. Several Computer Aided Diagnosis and Detection (CADD) systems based on hand-crafted ML algorithms achieved promising results in distinguishing PD patients from Healthy Control (HC) subjects and other Parkinsonian syndrome categories using clinical data (e.g., speech and gait impairments) and medical imaging [e.g., Position Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT)]. Despite the good performance of hand-crafted ML algorithms, there is still a problem linked to the features' extraction and selection. In fact, Deep Learning DL has provided an ultimate solution for the features' extraction and selection related issue. An important number of studies on the diagnosis of PD using DL algorithms were developed recently. This study provides an overview of the application of hand-crafted ML algorithms and DL techniques for PD diagnosis. It also introduces key concepts for understanding the application of ML methods to diagnose PD.

Inspec keywords: neurophysiology; positron emission tomography; single photon emission computed tomography; CAD; medical diagnostic computing; medical image processing; learning (artificial intelligence); diseases

Other keywords: Parkinson disease; deep learning algorithms; neurodegenerative disease; ML models; ML methods; medical diagnosis tasks; nonmotor disorders; machine learning; clinical data; artificial intelligence; Parkinsonian syndrome; computer-aided diagnosis; detection systems; single photon emission; hand-crafted ML algorithms; PD diagnosis

Subjects: Nuclear medicine, emission tomography; Biology and medical computing; Nuclear medicine, emission tomography; Knowledge engineering techniques; Patient diagnostic methods and instrumentation; Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 130. Javaid, M., Javid, M., Rehman, M.Z., et al: ‘A novel approach to CAD system for the detection of lung nodules in CT images’, Comput. Methods Programs Biomed., 2016, 135, pp. 125139.
    2. 2)
      • 87. Castillo-Barnes, D., Martinez-Murcia, F.J., Ortiz, A., et al: ‘Morphological characterization of functional brain imaging by isosurface analysis in Parkinson's disease’, Int. J. Neural Syst., 2020, 30, (9), p. 2050044.
    3. 3)
      • 37. Dickson, D.W.: ‘Neuropathology of Parkinson disease’, Parkinsonism Relat. Disord., 2018, 46, pp. 3033.
    4. 4)
      • 21. Bosch, A., Zisserman, A., Munoz, X.: ‘Image classification using random forests and ferns’. IEEE 11th Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, 2017, pp. 18.
    5. 5)
      • 26. Furey, T.S., Cristianini, N., Duffy, N., et al: ‘Support vector machine classification and validation of cancer tissue samples using microarray expression data’, Bioinformatics, 2000, 16, pp. 906914.
    6. 6)
      • 88. Segovia, F., Górriz, J.M., Ramírez, J., et al: ‘Analysis of 18F-DMFP PET data using multikernel classification in order to assist the diagnosis of Parkinsonism’. Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC), San Diego, CA, USA, 2015, pp. 14.
    7. 7)
      • 67. Koole, M., Walle, R.V., Laere, K.V.: ‘Study of the quantification of FBP SPECT images with a correction for partial volume effects’, IEEE Trans. Nucl. Sci., 2002, 49, pp. 6973.
    8. 8)
      • 50. Pimlott, S.L., Sutherland, A.: ‘Molecular tracers for the PET and SPECT imaging of disease’, Chem. Soc. Rev., 2011, 40, pp. 149162.
    9. 9)
      • 5. Ahmad, A.S.: ‘Brain inspired cognitive artificial intelligence for knowledge extraction and intelligent instrumentation system’. Int. Symp. on Electronics and Smart Devices (ISESD), Yogyakarta, 2017, pp. 352356.
    10. 10)
      • 105. Bottou, L.: ‘Large-scale machine learning with stochastic gradient descent’. Proc. of COMPSTAT, Paris, France, 2010, pp. 177186.
    11. 11)
      • 117. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Int. Conf. on Learning Representations (ICLR), San Diego, CA, USA, 2015.
    12. 12)
      • 126. Kaur, S., Aggarwal, H., Rani, R.: ‘Hyper-parameter optimization of deep learning model for prediction of Parkinson's disease’, Mach. Vis. Appl., 2020, 31, pp. 115.
    13. 13)
      • 15. Wang, X., Lu, S.: ‘Improved fuzzy multicategory support vector machines classifier’. Int. Conf. on Machine Learning and Cybernetics, Dalian, People's Republic of China, 2006, pp. 1316.
    14. 14)
      • 102. Hu, G., Li, H., Xia, Y., et al: ‘Computers in industry A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis’, Comput. Ind., 2018, 100, pp. 287296.
    15. 15)
      • 103. Milletari, F., Navab, N., Ahmadi, S.: ‘V-net: fully convolutional neural networks for volumetric medical image segmentation’. Fourth Int. Conf. on 3D Vision (3DV), Stanford, CA, USA, 2016, pp. 565571.
    16. 16)
      • 107. Duchi, J., Hazan, E., Singer, Y.: ‘Adaptive subgradient methods for online learning and stochastic optimization’, J. Mach. Learn. Res., 2010, 12, pp. 21212159.
    17. 17)
      • 95. Burrell, J.: ‘How the machine ‘thinks’: understanding opacity in machine learning algorithms’, Big. Data. Soc., 2016, 3, p. 205395171562251.
    18. 18)
      • 19. Alvarez, M.D.L., Hastie, H., Lane, D.: ‘Navigation-based learning for survey trajectory classification in autonomous underwater vehicles’. IEEE 27th Int. Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 2017, pp. 16.
    19. 19)
      • 122. Pereira, C.R., Weber, S.A.T., Rosa, G.H., et al: ‘Deep learning-aided Parkinson's disease diagnosis from handwritten dynamics’. 29th SIBGRAPI, Conf. on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, Brazil, 2016, pp. 340346.
    20. 20)
      • 96. Bhardwaj, R., Nambiar, A.R., Dutta, D.: ‘A study of machine learning in healthcare’. Annual Computer Software and Applications Conf. (COMPSAC), Turin, Italy, 2017, pp. 236241.
    21. 21)
      • 115. Sermanet, P., Eigen, D., Zhang, X., et al: ‘OverFeat: integrated recognition, localization and detection using convolutional networks’, 2nd International Conference on Learning Representations (ICLR), Banff, Canada, 2014, pp. 116.
    22. 22)
      • 17. Chandramma, , Kumar, P.P., Swathi, K.: ‘An efficient machine translation model for Dravidian language’. IEEE Int. Conf. on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 2017, pp. 21012105.
    23. 23)
      • 98. Shi, Y., Sagduyu, Y., Grushin, A.: ‘How to steal a machine learning classifier with deep learning’. IEEE Int. Symp. on Technologies for Homeland Security (HST), Waltham, MA, USA, 2017, pp. 15.
    24. 24)
      • 104. Gu, J., Wang, Z., Kuen, J., et al: ‘Recent advances in convolutional neural networks’, Pattern Recognit., 2018, 77, pp. 354377.
    25. 25)
      • 78. Abdi, H., Williams, L.J.: ‘Principal component analysis’, Wiley Interdiscip. Rev. Comput. Stat., 2010, 2, pp. 433459.
    26. 26)
      • 39. Das, S., Trutoiu, L., Murai, A., et al: ‘Quantitative measurement of motor symptoms in Parkinson's disease: a study with full-body motion capture data’. Conf. Proc. IEEE Engineering Medicine Biology Society, Boston, MA, USA, 2011, pp. 67896792.
    27. 27)
      • 31. Palumbo, B., Fravolini, M.L., Buresta, T., et al: ‘Diagnostic accuracy of Parkinson disease by support vector machine (SVM) analysis of 123I-FP-CIT brain SPECT data: implications of Putaminal findings and age’, Medicine, 2014, 93, pp. 15.
    28. 28)
      • 109. Zeiler, M.D.: ‘ADADELTA: an adaptive learning rate method’, J. ArXiv, Comput. Sci.2012, pp. 16.
    29. 29)
      • 75. Kim, K.I., Franz, M.O., Scho, B.: ‘Iterative kernel principal component analysis for image modeling’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, pp. 13511366.
    30. 30)
      • 125. Taleb, C., Likforman-Sulem, L., Mokbel, C., et al: ‘Detection of Parkinson's disease from handwriting using deep learning: a comparative study’, Evol. Intell., 2020, pp. 112.
    31. 31)
      • 14. Deng, L., Li, X.: ‘Machine learning paradigms for speech recognition: an overview’, IEEE Trans. Audio Speech Lang. Process., 2013, 21, pp. 10601089.
    32. 32)
      • 48. Thobois, S., Prange, S., Scheiber, C., et al: ‘What a neurologist should know about PET and SPECT functional imaging for parkinsonism: a practical perspective’, Parkinsonism Relat. Disord., 2018, 59, pp. 93100.
    33. 33)
      • 132. Ali, L., Khelil, K., Wajid, S.K., et al: ‘Machine learning based computer-aided diagnosis of liver tumours’. IEEE 16th Int. Conf. on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 2017, pp. 139145.
    34. 34)
      • 47. Jankovic, J.: ‘Parkinson's disease: clinical features and diagnosis’, J. Neurol. Neurosurg. Psychiatry, 2008, 79, pp. 368376.
    35. 35)
      • 76. Guzman-Cabrera, R., Gomez-Sarabia, M., Torres-Cisneros, M.: ‘Parkinson's disease: improved diagnosis using image processing’. Photonics North (PN), Ottawa, ON, Canada, 2017.
    36. 36)
      • 45. Hayes, M.T.: ‘Parkinson's disease and parkinsonism’, Am. J. Med., 2019, 132, pp. 802807.
    37. 37)
      • 108. Ji, S., Ye, J.: ‘An accelerated gradient method for trace norm minimization’. Proc. of the 26th Annual Int. Conf. on Machine Learning, Montreal, Canada, 2019.
    38. 38)
      • 49. Kogan, M., McGuire, M., Riley, J.: ‘Deep brain stimulation for Parkinson disease’, Neurosurg. Clin. N. Am., 2019, 30, pp. 137146.
    39. 39)
      • 82. Oliveira, F.P., Castelo-Branco, M.: ‘Computer-aided diagnosis of Parkinson's disease based on [123I]FP-CIT SPECT binding potential images, using the voxels- as-features approach and support vector machines’, J. Neural. Eng., 2015, 12, p. 026008.
    40. 40)
      • 80. Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., et al: ‘Texture features based detection of Parkinson's disease on DaTSCAN images’, Nat. Artif. Comput. Eng. Med. Appl., 2013, 7931, pp. 266277.
    41. 41)
      • 32. Segovia, F., Gorriz, J.M., Ramírez, J., et al: ‘Multiclass classification of 18 F-DMFP-PET data to assist the diagnosis of parkinsonism’. Int. Workshop on Pattern Recognition in Neuroimaging (PRNI), Trento, Italy, 2016, pp. 1821.
    42. 42)
      • 114. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’. Int. Conf. on Mach. Learn., Lille, France, 2015, 37, pp. 19.
    43. 43)
      • 91. Segovia, F., Górriz, J.M., Ramírez, J., et al: ‘Multivariate analysis of 18F-DMFP PET data to assist the diagnosis of Parkinsonism’, Front. Neuroinform., 2017, 11, pp. 19.
    44. 44)
      • 61. Naumann, M., Pirker, W., Reiners, K.: ‘Imaging the pre- and postsynaptic side of striatal dopaminergic synapses in idiopathic cervical dystonia: a SPECT study epidepride and [1231]’, Mov. Disord., 1998, 13, pp. 319323.
    45. 45)
      • 90. Prashanth, R., Member, S., Roy, S.D., et al: ‘High accuracy classification of Parkinson's disease through shape analysis and surface fitting in 123I-ioflupane SPECT imaging’, IEEE. J. Biomed. Health. Inform., 2016, 21, pp. 794802.
    46. 46)
      • 84. Mabrouk, R., Chikhaoui, B., Bentabet, L.: ‘Machine learning based classification using clinical and DaTSCAN SPECT imaging features: a study on Parkinson's disease and SWEDD’, Trans. Radiat. Plasma Med. Sci., 2018, 3, pp. 170177.
    47. 47)
      • 129. Trott, C.M., El Fakhri, G.: ‘Comparison of brain PET and sequential and simultaneous dual-isotope SPECT for estimation tasks in normal and Parkinson subjects’. IEEE Nuclear Science Symp. Conf. Record, Honolulu, HI, USA, 2007, pp. 36163620.
    48. 48)
      • 113. Xu, J., Wang, B., Li, J.: ‘Deep learning application based on embedded GPU’. First Int. Conf. on Electronics Instrumentation & Information Systems (EIIS), Harbin, People's Republic of China, 2017, pp. 14.
    49. 49)
      • 72. Roth, H.R., Lu, L., Liu, J., et al: ‘Improving computer-aided detection using convolutional neural networks and random view aggregation’, IEEE Trans. Med. Imaging, 2016, 35, pp. 11701181.
    50. 50)
      • 58. Nichols, K.J., Chen, B., Tomas, M.B., et al: ‘Interpreting 123I – ioflupane dopamine transporter scans using hybrid scores’, Eur. J. Hybrid Imaging, 2018, 2, pp. 113.
    51. 51)
      • 94. Jordan, M.I., Mitchell, T.M.: ‘Machine learning: trends, perspectives, and prospects’, Science, 2015, 349, pp. 255260.
    52. 52)
      • 51. Kharfi, F.: ‘Principles and applications of nuclear medical imaging: a survey on recent developments’, in Kharfi, F. (Ed.): ‘Imaging and radioanalytical techniques in interdisciplinary research - fundamentals and cutting edge applications’ (InTech, London, 2013), pp. 333.
    53. 53)
      • 43. Hughes, A.J., Daniel, S.E., Ben-Shlomo, Y., et al: ‘The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service’, Brain, 2002, 125, pp. 861870.
    54. 54)
      • 55. Nurmi, E., Ruottinen, H.M., Bergman, J., et al: ‘Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study’, Mov. Disord., 2001, 16, pp. 608615.
    55. 55)
      • 11. Yeasmin, S.: ‘Benefits of artificial intelligence in medicine’. 2nd Int. Conf. on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 2019, pp. 16.
    56. 56)
      • 66. Koole, M., Walle, R.V., Laere, R.V.: ‘A recursive algorithm for quantification of brain perfusion SPECT images’. IEEE Nuclear Science Symp. Conf. Record, San Diego, CA, USA, 2001, vol. 3, pp. 15131516.
    57. 57)
      • 25. Devi, R.D.H., Devi, M.I.: ‘Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer’, Int. J. Adv. Eng. Technol., 2016, pp. 9398.
    58. 58)
      • 73. Firmino, M., Angelo, G., Morais, H., et al: ‘Computer aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy’, Biomed. Eng. Online, 2016, 15, pp. 117.
    59. 59)
      • 65. Marek, K., Jennings, D., Lasch, S., et al: ‘Progress in neurobiology the Parkinson progression marker initiative (PPMI)’, Prog. Neurobiol., 2011, 95, pp. 629635.
    60. 60)
      • 40. Wu, W., Lin, W., Lee, M.: ‘Forward-flexed posture detection for the early Parkinson's disease symptom’. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 2014, pp. 11811185.
    61. 61)
      • 34. Al-Fatlawi, A.H., Jabardi, M.H., Ling, S.H.: ‘Efficient diagnosis system for Parkinson's disease using deep belief network’. IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 2017, pp. 13241330.
    62. 62)
      • 106. Polyak, B.T.: ‘Some methods of speeding up the convergence of iteration methods’, USSR Comput. Math. Math. Phys., 1964, 4, pp. 117.
    63. 63)
      • 101. Miikkulainen, R., Liang, J., Meyerson, E.: ‘Evolving deep neural networks’, in Kozma, R., Alippi, C., Choe, Y., et al (Eds.:) ‘Artificial intelligence in the age of neural networks and brain computing’ (Academic Press, USA, 2019), pp. 293312.
    64. 64)
      • 62. Strafella, A.P., Ko, J.H., Grant, J., et al: ‘Corticostriatal functional interactions in Parkinson's disease: a rTMS⁄[11C] raclopride PET study’, Eur. J. Neurosci., 2005, 22, pp. 29462952.
    65. 65)
      • 79. Chen, L., Seidel, G., Mertins, A.: ‘Multiple feature extraction for early Parkinson risk assessment based on transcranial sonography image’. IEEE Int. Conf. on Image Processing, Hong Kong, 2010, pp. 22772280.
    66. 66)
      • 131. Hameed, N., Shabut, A., Hossain, M.A.: ‘A computer-aided diagnosis system for classifying prominent skin lesions using machine learning’. Computer Science and Electronic Engineering (CEEC), Colchester, UK, 2018, pp. 186191.
    67. 67)
      • 9. Kumar, N., Kharkwal, N., Kohli, R., et al: ‘Ethical aspects and future of artificial intelligence’. Int. Conf. on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Yogyakarta, 2016, pp. 111114.
    68. 68)
      • 36. Dinda, B., Dinda, M., Kulsi, G., et al: ‘European journal of medicinal chemistry therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: a review’, Eur. J. Med. Chem., 2019, 169, pp. 185199.
    69. 69)
      • 118. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770778.
    70. 70)
      • 54. McCleery, J., Morgan, S., Bradley, K.M.: ‘Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies’, Cochrane Database Syst. Rev., 2015, 1, pp. 133.
    71. 71)
      • 92. Kononenko, I.: ‘Machine learning for medical diagnosis: history, state of the art and perspective’, Artif. Intell. Med., 2001, 23, pp. 89109.
    72. 72)
      • 10. Ruhela, S.: ‘Thematic correlation of human cognition and artificial intelligence’. Amity Int. Conf. on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 2019, pp. 367370.
    73. 73)
      • 133. Tsangaratos, P., Ilia, I.: ‘Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size’, Catena, 2016, 145, pp. 164179.
    74. 74)
      • 53. Booij, J., Tissingh, G., Boer, G.J.: ‘[123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease’, J. Neurol. Neurosurg. Psychiatry, 1997, 62, pp. 133140.
    75. 75)
      • 29. Roy, R., Sasi, S.: ‘Classification of WBC using deep learning for diagnosing diseases’. Second Int. Conf. on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 16341638.
    76. 76)
      • 127. Li, G., Daoudi, K., Klempir, J., et al: ‘Linear classification in speech-based objective differential diagnosis of parkinsonism’. IEEE Int. Conf. Acoustics Speech Signal Process, Calgary, AB, Canada, 2018, pp. 59996003.
    77. 77)
      • 116. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2014, pp. 19.
    78. 78)
      • 4. Liu, Y., Tang, P.: ‘The prospect for the application of the surgical navigation system based on artificial intelligence and augmented reality’. IEEE Int. Conf. on Artificial Intelligence and Virtual Reality (AIVR), Taichung, Taiwan, 2018, pp. 244246.
    79. 79)
      • 35. Vasquez-Correa, J.C., Arias-Vergara, T., Orozco-Arroyave, J.R.: ‘Multimodal assessment of Parkinson's disease: a deep learning approach’, IEEE J. Biomed. Health Inform., 2019, 23, pp. 16181630.
    80. 80)
      • 120. Manzanera, O.M., Meles, S.K., Leenders, K.L., et al: ‘Scaled subprofile modeling and convolutional neural networks for the identification of Parkinson's disease in 3D nuclear imaging data’, Int. J. Neural Syst., 2019, 29, (9), p. 1950010.
    81. 81)
      • 46. Tolosa, E., Wenning, G., Poewe, W.: ‘The diagnosis of Parkinson's disease’, Lancet Neurol., 2006, 5, pp. 7586.
    82. 82)
      • 3. Lu, H., Li, Y., Min, C., et al: ‘Brain intelligence: go beyond artificial intelligence’, Mobile Netw. Appl., 2018, 23, pp. 368375.
    83. 83)
      • 24. Chen, C.H., Huang, W.T., Tan, T.H., et al: ‘Using K-nearest neighbor classification to diagnose abnormal lung sounds’, Sensors, 2015, 15, pp. 1313213158.
    84. 84)
      • 110. Diederik, P.K., Jimmy, B.: ‘Adam: a method for stochastic optimization’. Int. Conf. on Learning Representations (ICLR), San Diego, CA, USA, 2015.
    85. 85)
      • 41. Chaudhuri, K.R., Healy, D.G., Schapira, A.H.V.: ‘Non-motor symptoms of Parkinson's disease: diagnosis and management’, Lancet Neurol., 2006, 5, pp. 235245.
    86. 86)
      • 100. Ando, H., Niitsu, Y.: ‘Improvements of classification accuracy of film defects by using GPU-accelerated image processing and machine learning frameworks’. Nicograph Int. (NicoInt), Hanzhou, People's Republic of China, 2016, pp. 8387.
    87. 87)
      • 8. Mellit, A.: ‘Artificial intelligence technique for modelling and forecasting of solar radiation data: a review’, Int. J. Artif. Intell. Soft Comput., 2008, 1, (1), pp. 5276.
    88. 88)
      • 74. Shen, L., Shi, J., Gong, B., et al: ‘Multiple empirical kernel mapping based broad learning system for classification of Parkinson's disease with transcranial sonography’. Conf. Proc. IEEE Engineering Medicine Biology Society, Honolulu, HI, USA, 2018, pp. 31323135.
    89. 89)
      • 38. Cancela, J., Villanueva, M.S., Gatsios, D.: ‘Monitoring of motor and non - motor symptoms of Parkinson's disease through a mHealth platform’. Conf. Proc. IEEE Engineering Medicine Biology Society, Orlando, FL, USA, 2016, pp. 663666.
    90. 90)
      • 86. Shiiba, T., Arimura, Y., Nagano, M., et al: ‘Improvement of classification performance of Parkinson's disease using shape features for machine learning on dopamine transporter single photon emission computed tomography’, PLOS One, 2020, 15, (1), p. e0228289.
    91. 91)
      • 63. Kaasinen, V., Ruottinen, H.M., Någren, K., et al: ‘Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone’, J. Nucl. Med., 2000, 41, pp. 6570.
    92. 92)
      • 77. Pham, T.D.: ‘Texture classification and visualization of time series of gait dynamics in patients with neuro-degenerative diseases’, IEEE Trans. Neural Syst. Rehabil. Eng., 2018, 26, pp. 188196.
    93. 93)
      • 121. Huang, G., Lin, C., Cai, Y., et al: ‘Multiclass machine learning classification of functional brain images for Parkinson's disease stage prediction’, Stat. Anal. Data Min., ASA Data Sci. J., 2020, 13, pp. 508523.
    94. 94)
      • 71. Doi, K.: ‘Computer-aided diagnosis in medical imaging: historical review, current status and future potential’, Comput. Med. Imaging Graph., 2007, 31, pp. 198211.
    95. 95)
      • 89. Segovia, F., Illán, I.A., Górriz, J.M., et al: ‘Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks’, Front. Comput. Neurosci., 2015, 9, pp. 18.
    96. 96)
      • 20. Chen, L., Li, R., Liu, Y., et al: ‘Machine learning-based product recommendation using apache spark’. IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, San Francisco, CA, USA, 2017, pp. 16.
    97. 97)
      • 44. Schrag, A., Good, C.D., Miszkiel, K., et al: ‘Differentiation of atypical parkinsonian syndromes with routine MRI’, Neurology, 2000, 54, pp. 697702.
    98. 98)
      • 123. Wodzinski, M., Skalski, A., Hemmerling, D., et al: ‘Deep learning approach to Parkinson's disease detection using voice recordings and convolutional neural network dedicated to image classification’. Conf. Proc. IEEE Engineering Medicine Biology Society, Berlin, Germany, 2019, pp. 717720.
    99. 99)
      • 2. Yaseen, Z.M., El-shafie, A., Jaafar, O., et al: ‘Artificial intelligence based models for stream-flow forecasting: 2000 – 2015’, J. Hydrol., 2015, 530, pp. 829844.
    100. 100)
      • 52. Davie, C.A.: ‘A review of Parkinson's disease’, Br. Med. Bull., 2008, 86, pp. 109127.
    101. 101)
      • 59. Marek, K., Innis, R., van Dyck, C., et al: ‘[123I]-CIT SPECT imaging assessment of the rate of Parkinson's disease progression’, Neurology, 2001, 57, pp. 20892094.
    102. 102)
      • 1. Mellit, A., Kalogirou, S.A.: ‘Artificial intelligence techniques for photovoltaic applications: a review’, Prog. Energy Combust. Sci., 2008, 34, pp. 574632.
    103. 103)
      • 30. Moussa, O., Khachnaoui, H., Guetari, R., et al: ‘Thyroid nodules classification and diagnosis in ultrasound images using fine-tuning deep convolutional neural network’, Int. J. Imaging Syst. Technol., 2019, 30, pp. 185195.
    104. 104)
      • 81. Prashanth, R., Dutta, S., Mandal, P.K., et al: ‘Automatic classification and prediction models for early Parkinson's disease diagnosis from SPECT imaging’, Expert Syst. Appl., 2014, 41, pp. 33333342.
    105. 105)
      • 22. Zhang, Z., Sejdi, E.: ‘Radiological images and machine learning: trends, perspectives, and prospects’, Comput. Biol. Med., 2019, 108, pp. 354370.
    106. 106)
      • 128. Das, B., Daoudi, K., Klempir, J., et al: ‘Towards disease-specific speech markers for differential diagnosis in Parkinsonis’. IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 58465850.
    107. 107)
      • 111. Begum, A., Fatima, F., Sabahath, A.: ‘Implementation of deep learning algorithm with perceptron using TenzorFlow library’. Int. Conf. on Communication and Signal Processing (ICCSP), Melmaruvathur, TN, India, 2019, pp. 172175.
    108. 108)
      • 93. Erickson, B.J., Korfiatis, P., Akkus, Z., et al: ‘Machine learning for medical imaging’, Radiographics, 2017, 37, pp. 505515.
    109. 109)
      • 112. Aksu, D., Aydin, M.A.: ‘Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms’. Int. Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 2018, pp. 7780.
    110. 110)
      • 64. Vlaar, A.M., Nijs, T., Kessels, A.G., et al: ‘Diagnostic value of 123I-ioflupane and I-iodobenzamide SPECT scans in 248 patients with Parkinsonian syndromes’, Eur. Neurol., 2008, 59, pp. 258266.
    111. 111)
      • 124. El Maachi, I., Bilodeau, G.A., Bouachir, W.: ‘Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait’, Expert Syst. Appl., 2020, 143, p. 113075.
    112. 112)
      • 42. Caparros-Lefebvre, D., Blond, S., Vermersch, P., et al: ‘Chronic thalamic stimulation improves tremor and levodopa induced dyskinesias in Parkinson's disease’, J. Neurol. Neurosurg. Psychiatry, 2018, 56, pp. 268273.
    113. 113)
      • 23. Nithya, B., Ilango, V.: ‘Predictive analytics in health care using machine learning tools and techniques’. Int. Conf. on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2017, pp. 492499.
    114. 114)
      • 97. Jiang, B., Jinrong, H., Shuqin, Y., et al: ‘Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues’, Artif. Intell. Agric., 2019, 1, pp. 18.
    115. 115)
      • 60. Siderowf, A., Newberg, A., Chou, K.L., et al: ‘[99mTc]TRODAT-1 SPECT imaging correlates with odor identification in early Parkinson disease’, Neurology, 2005, 64, pp. 17161720.
    116. 116)
      • 68. Sanderson, T., Solomon, J., Nottage, C., et al: ‘Underestimation of 68Ga PET/CT SUV caused by activity overestimation using default calibrator settings’, Physica Med., 2019, 59, pp. 158162.
    117. 117)
      • 16. Lakhani, P., Prater, A.B., Hutson, R.K., et al: ‘Machine learning in radiology: applications beyond image interpretation’, J. Am. Coll. Radiol., 2018, 15, pp. 350359.
    118. 118)
      • 18. Adeyanju, I.A., Omidiora, E.O., Oyedokun, O.F.: ‘Performance evaluation of different support vector machine kernels for face emotion recognition’. SAI Intelligent Systems Conf., London, UK, 2015, pp. 804806.
    119. 119)
      • 69. Branchini, M., Zorza, A., Zucchettab, P., et al: ‘Impact of acquisition count statistics reduction and SUV discretization on PET radiomic features in pediatric 18F-FDG-PET/MRI examinations’, Physica Med., 2019, 59, pp. 117126.
    120. 120)
      • 33. Choi, H., Ha, S., Im, H.J., et al: ‘Refining diagnosis of Parkinson's disease with deep learning based interpretation of dopamine transporter imaging’, NeuroImage Clin., 2017, 16, pp. 586594.
    121. 121)
      • 12. Zhang, Y., Lu, S., Zhou, X., et al: ‘Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine’, Simul. Digit. Image Process. Med. Appl., 2016, 92, pp. 861871.
    122. 122)
      • 99. Zhang, Q., Yang, L.T., Chen, Z., et al: ‘A survey on deep learning for big data’, Inf. Fusion, 2018, 42, pp. 146157.
    123. 123)
      • 28. Moussa, O., Nawres, K.: ‘Ultrasound image denoising using a combination of bilateral filtering and stationary wavelet transform’. Int. Image Processing, Applications and Systems Conf., Sfax, Tunisia, 2014, pp. 15.
    124. 124)
      • 56. Xie, T., Warnke, P., Kang, U.J., et al: ‘Role of DaTSCAN and clinical diagnosis in Parkinson disease’, Neurology, 2012, 79, pp. 17441744.
    125. 125)
      • 6. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine theory and applications’, Neurocomputing, 2006, 70, pp. 489501.
    126. 126)
      • 83. Bhalchandra, N.A., Prashanth, R., Roy, S.D.: ‘Early detection of Parkinson's disease through shape based features from 123I-ioflupane SPECT imaging’. Int. Symp. on Biomedical Imaging (ISBI), New York, NY, USA, 2015, pp. 963966.
    127. 127)
      • 57. Deeb, J., Shah, M., Muhammed, N., et al: ‘A basic smell test is as sensitive as a dopamine transporter scan: comparison of olfaction, taste and DaTSCAN in the diagnosis of Parkinson's disease’, QJM, 2010, 103, pp. 941952.
    128. 128)
      • 119. Wenzel, M., Milletari, F., Krüger, J., et al: ‘Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics’, Eur. J. Nucl. Med. Mol. Imaging, 2019, 46, (13), pp. 28002811.
    129. 129)
      • 27. Van Opbroek, A., Achterberg, H.C., Vernooij, M.W., et al: ‘Transfer learning for image segmentation by combining image weighting and kernel learning’, IEEE Trans. Med. Imaging, 2019, 38, pp. 213224.
    130. 130)
      • 70. Jalalian, A., Mashohor, S.B., Mahmud, H.R., et al: ‘Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review’, J. Clin. Imaging, 2013, 37, pp. 420426.
    131. 131)
      • 13. Basheer, I.A., Hajmeer, M.: ‘Artificial neural networks: fundamentals, computing, design, and application’, J. Microbiol. Methods, 2000, 43, pp. 331.
    132. 132)
      • 7. Zhang, X., Dahu, W.: ‘Application of artificial intelligence algorithms in image processing’, J. Vis. Commun. Image Represent., 2019, 61, pp. 4249.
    133. 133)
      • 85. Tang, J., Yang, B., Adams, M.P., et al: ‘Artificial neural network – based prediction of outcome in Parkinson's disease patients using DaTscan SPECT imaging features’, Mol. Imaging Biol., 2019, 21, pp. 11651173.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1048
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading