Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Retinal vessel segmentation based on task-driven generative adversarial network

Retinal vessel segmentation has important application value in clinical diagnosis. If experts manually segment the retinal vessels, the workload is heavy, and the result is strong subjectively. However, some existing automatic segmentation methods have the problems of incomplete vessel segmentation and low-segmentation accuracy. In order to solve the above problems, this study proposes a retinal vessel segmentation method based on task-driven generative adversarial network (GAN). In the generative model, a U-Net network is used to segment the retinal vessels. In the discriminative model, multi-scale discriminators with different receptive fields are used to guide the generative model to generate more details. On the other hand, in view of the uncontrollable characteristics of the data generated by the traditional GAN, a task-driven model based on perceptual loss is added to traditional GAN for feature matching, which makes the generated image more task-specific. Experimental results show that the accuracy, sensitivity, specificity and area under the receiver operating characteristic curve of the proposed method on data set digital retinal images for vessel extraction are 96.83, 80.66, 98.97 and 0.9830%, respectively.

References

    1. 1)
      • 24. Zhou, L., Yu, Q., Xu, X., et al: ‘Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement’, Comput. Meth. Programs Biomed., 2017, 148, pp. 1315.
    2. 2)
      • 2. Wong, T.Y., Klein, R., Sharrett, A.R., et al: ‘Retinal arteriolar diameter and risk for hypertension’, Ann. Intern. Med., 2004, 140, (40), pp. 248255.
    3. 3)
      • 13. Martinezperez, M.E., Hughes, A.D., Thom, S.A., et al: ‘Segmentation of blood vessels from red-free and fluorescein retinal images’, Med. Image Anal., 2007, 11, (1), pp. 4761.
    4. 4)
      • 26. Wu, C.Y., Yi, B.S., Zhang, Y.G., et al: ‘Retinal vessel image segmentation based on improved convolutional neural network’, Acta Opt. Sin., 2018, 38, (11), p. 111104.
    5. 5)
      • 29. Zheng, T.Y., Tang, C., Lei, Z.K.: ‘Multi-scale retinal vessel segmentation based on fully convolutional neural network’, Acta Opt. Sin., 2019, 39, (2), p. 0211002.
    6. 6)
      • 27. Strisciuglio, N., Azzopardi, G., Vento, M., et al: ‘Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters’, Mach. Vis. Appl., 2016, 27, (8), pp. 11371149.
    7. 7)
      • 25. Cai, Z., Tang, P., Hu, J., et al: ‘Segmentation of retinal vessels based on PST and multi-scale Gauss filtering’, Appl. Res. Comput., 2019, 36, (7), pp. 137146.
    8. 8)
      • 28. Ngo, L., Han, J.H.: ‘Multi-level deep neural network for efficient segmentation of blood vessels in fundus images’, Electron. Lett., 2017, 53, (16), pp. 10961098.
    9. 9)
      • 3. Zhu, C., Zou, B., Zhao, R., et al: ‘Retinal vessel segmentation in colour fundus images using extreme learning Machine’, Comput. Med. Imaging Graph., Off. J. Comput. Med. Imaging Soc., 2017, 55, pp. 6877.
    10. 10)
      • 9. Zana, F., Klein, J.C.: ‘Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation’, IEEE Trans. Image Process, 2001, 10, (7), pp. 10101019.
    11. 11)
      • 19. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: ‘Blood vessels in retinal images by piecewise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    12. 12)
      • 11. Fraz, M.M., Remagnino, P., Hoppe, A., et al:Blood vessel segmentation methodologies in retinal images-a survey’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 407433.
    13. 13)
      • 21. Jin, Q.G., Meng, Z.P., Pham, T.D., et al: ‘DUNet: a deformable network for retinal vessel segmentation’, Knowl.-Based Syst., 2019, 178, pp. 149162.
    14. 14)
      • 18. Staal, J., Abramoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    15. 15)
      • 14. Liskowski, P., Krawiec, K.: ‘Segmenting retinal blood vessels with deep neural networks’, IEEE Trans. Med. Imaging, 2016, 35, (11), pp. 23692380.
    16. 16)
      • 22. Isola, P., Zhu, J., Zhou, T., et al: ‘Image-to-image translation with conditional adversarial networks’. Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 59675976.
    17. 17)
      • 1. Zheng, Y., Kwong, M.T., MacCormick, I.J.C., et al: ‘A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms’, Plos One, 2014, 9, (4), pp. 93104.
    18. 18)
      • 10. Espona, L., Carreira, M.J., Penedo, M.G., et al: ‘Retinal vessel tree segmentation using a deformable contour model’. Proc. of the 19th Int. Conf. on Pattern Recognition, Tampa, FL, USA, 2008, pp. 14.
    19. 19)
      • 20. Kingma, D.P., Ba, J.A.: ‘A method for stochastic optimization’. Proc. of the 3rd Int. Conf. on Learning Representations, San Diego, CA, USA, 2014, pp. 115.
    20. 20)
      • 16. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al: ‘Generative adversarial nets’. Proc. 27th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, NV, USA, 2014, pp. 26722680.
    21. 21)
      • 5. Gwetu, M.V., Tapamo, J.R., Viriri, S.: ‘Segmentation of retinal blood vessels using normalized Gabor filters and automatic thresholding’, S. Afr. Comput. J., 2014, 55, (1), pp. 1224.
    22. 22)
      • 15. Brinchmann-Hansen, O., Engvold, O.: ‘Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs’, Acta Ophthalmol., 1986, 64, pp. 919.
    23. 23)
      • 7. You, X.G., Peng, Q.M., Yuan, Y., et al: ‘Segmentation of retinal blood vessels using the radial projection and semi-supervised approach’, Pattern Recognit., 2011, 44, (10/11), pp. 23142324.
    24. 24)
      • 6. Zhang, L., Fisher, M., Wang, W.J.: ‘Retinal vessel segmentation using multi-scale textons derived from keypoints’, Comput. Med. Imaging Graph., 2015, 45, pp. 4756.
    25. 25)
      • 23. Gao, X., Cai, Y., Qiu, C., et al: ‘Retinal blood vessel segmentation based on the Gaussian matched filter and U-net’. Proc. 10th Int. Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Shanghai, People's Republic of China, 2018, pp. 115.
    26. 26)
      • 8. Zhang, J., Li, H.Q., Nie, Q., et al: ‘A retinal vessel boundary tracking method based on Bayesian theory and mutil-scale line detection’, Comput. Med. Imaging Graph., 2014, 38, (6), pp. 517525.
    27. 27)
      • 12. Liskowski, P., Krawiec, K.: ‘Segmentation retinal blood vessels with deep neural networks’, IEEE Trans. Med. Imaging, 2016, 35, (11), pp. 23692380.
    28. 28)
      • 4. Odstrcilik, J., Kolar, R., Budai, A., et al: ‘Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database’, IET Image Process., 2013, 7, (4), pp. 373383.
    29. 29)
      • 17. Liu, F., Jiao, L., Tang, X.: ‘Task-oriented GAN for PolSAR image classification and clustering’, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (9), pp. 270727197.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1032
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address