access icon free Ordered and fixed-length bit-string fingerprint representation with minutia vicinity combined feature and spectral clustering

The minutiae set defined by the ISO/IEC 19794-2 is one of the prevalent feature used in fingerprint recognition systems. Unfortunately, such characteristic of unordered and variable-sized minutiae information causes a restriction on the operation in some advanced template protection methods (e.g. fuzzy commitment), which usually require an ordered and fixed-length binary feature representation as the system input. In this study, in order to simultaneously extend the application of fingerprint recognition and provide satisfactory system performance, the authors propose a novel fixed-length bit-string conversion framework based on spectral clustering and the proposed newly designed discriminative fingerprint representation called minutia vicinity combined feature (MVCF). The proposed method consists of three stages: (i) the extraction of MVCF, (ii) bit conversion via the spectral clustering algorithm, and (iii) matching. Benefiting from feature invariance, fixed-length and bit-oriented coding, merits such as fast matching and decent accuracy are well guaranteed. The performance evaluation is conducted on six publicly available benchmark data sets: FVC2002 DB1, DB2, DB3 and FVC2004 DB1, DB2, DB3 confirms the superiority of the proposed method and suggests the promise of migrating to some other domains (e.g., template protection).

Inspec keywords: fuzzy set theory; fingerprint identification; image matching; pattern clustering

Other keywords: FVC2002 DB1; feature invariance; fixed-length bit-string conversion framework; FVC2004 DB1; prevalent feature; DB2; spectral clustering algorithm; minutia vicinity combined feature; variable-sized minutiae information; satisfactory system performance; bit-oriented coding; DB3; system input; fingerprint recognition systems; newly designed discriminative fingerprint representation; bit conversion; ordered fixed-length binary feature representation; advanced template protection methods; fixed-length bit-string fingerprint representation

Subjects: Image recognition; Computer vision and image processing techniques; Combinatorial mathematics

References

    1. 1)
      • 23. Yang, W., Hu, J., Wang, S., et al: ‘Biometrics for securing mobile payments: benefits, challenges and solutions’. Int. Congress on Image & Signal Processing, Hangzhou, People's Republic of China, 2013, pp. 16991704.
    2. 2)
      • 39. Kho, J.B., Teoh, A.B., Lee, W., et al: ‘Bit-string representation of a fingerprint image by normalized local structures’, Pattern Recognit., 2020, 103, p. 107323.
    3. 3)
      • 28. Xu, H., Veldhuis, R.N., Bazen, A.M., et al: ‘Fingerprint verification using spectral minutiae representations’, IEEE Trans. Inf. Forensic Secur., 2009, 4, (3), pp. 397409.
    4. 4)
      • 27. Patel, V.M., Ratha, N.K., Chellappa, R.: ‘Cancelable biometrics: a review’, IEEE Signal Process. Mag., 2015, 32, (5), pp. 5465.
    5. 5)
      • 36. Wong, W.J., Wong, M.D., Kho, Y.H., et al: ‘Minutiae set to bit-string conversion using multi-scale bag-of-words paradigm’. Workshop on Information Forensics & Security, Atlanta, GA, USA, 2015, pp. 16.
    6. 6)
      • 44. Kho, J.B., Kim, J., Kim, I.-J., et al: ‘Cancelable fingerprint template design with randomized non-negative least squares’, Pattern Recognit., 2019, 91, pp. 245260.
    7. 7)
      • 30. Sutcu, Y., Rane, S., Yedidia, J.S., et al: ‘Feature extraction for a Slepian-Wolf biometric system using LDPC codes’. IEEE Int. Symp. on Information Theory, Toronto, ON, Canada, 2008, pp. 22972301.
    8. 8)
      • 29. Nandakumar, K.: ‘A fingerprint cryptosystem based on minutiae phase spectrum’. IEEE Int. Workshop on Information Forensics & Security, Seattle, WA, USA, 2010, pp. 16.
    9. 9)
      • 26. Feng, J.: ‘Combining minutiae descriptors for fingerprint matching’, Pattern Recognit., 2008, 41, (1), pp. 342352.
    10. 10)
      • 43. Liu, C., Bian, J., Fu, X., et al: ‘Complex Gaussian mixture model for fingerprint minutiae’. Int. Conf. on Pattern Recognition, Tsukuba, Japan, 2012, pp. 545548.
    11. 11)
      • 16. Juels, A., Wattenberg, M.: ‘A fuzzy commitment scheme’. ACM Conf. on Computer & Communications Security, New York, NY, USA, 1999, pp. 2836.
    12. 12)
      • 9. Jiang, X., Yau, W.-Y.: ‘Fingerprint minutiae matching based on the local and global structures’. Int. Conf. on Pattern Recognition, Barcelona, Spain, 2000, pp. 10381041.
    13. 13)
      • 5. Jin, Z., Teoh, A.B.J., Ong, T.S., et al: ‘Fingerprint template protection with minutiae-based bit-string for security and privacy preserving’, Expert Syst. Appl., 2012, 39, (6), pp. 61576167.
    14. 14)
      • 13. Lee, C., Kim, J.: ‘Cancelable fingerprint templates using minutiae-based bit-strings’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 236246.
    15. 15)
      • 19. Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable biometrics’, EURASIP J. Inf. Secur., 2011, 2011, (1), p. 3.
    16. 16)
      • 1. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer-Verlag, London, 2009, 2nd edn.).
    17. 17)
      • 2. Zhong, W.-b., Ning, X.-b., Wei, C.-j.: ‘A fingerprint matching algorithm based on relative topological relationship among minutiae’. Int. Conf. on Neural Networks & Signal Processing, Nanjing, People's Republic of China, 2008, pp. 225228.
    18. 18)
      • 18. Juels, A., Sudan, M.: ‘A fuzzy vault scheme’, Des. Codes Cryptogr., 2006, 38, (2), pp. 237257.
    19. 19)
      • 37. Jin, Z., Lim, M.-H., Teoh, A.B.J., et al: ‘Generating fixed-length representation from minutiae using kernel methods for fingerprint authentication’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 46, (10), pp. 14151428.
    20. 20)
      • 41. Cappelli, R., Ferrara, M., Maltoni, D., et al: ‘MCC: a baseline algorithm for fingerprint verification in FVC-onGoing’. Int. Conf. on Control Automation Robotics & Vision, Singapore, Singapore, 2010, pp. 1923.
    21. 21)
      • 34. Wang, S., Deng, G., Hu, J.: ‘A partial Hadamard transform approach to the design of cancelable fingerprint templates containing binary biometric representations’, Pattern Recognit., 2017, 61, pp. 447458.
    22. 22)
      • 33. Wang, S., Yang, W., Hu, J.: ‘Design of alignment-free cancelable fingerprint templates with zoned minutia pairs’, Pattern Recognit., 2017, 66, pp. 295301.
    23. 23)
      • 22. Lim, M.-H., Teoh, A.B.J., Toh, K.-A.: ‘An efficient dynamic reliability-dependent bit allocation for biometric discretization’, Pattern Recognit., 2012, 45, (5), pp. 19601971.
    24. 24)
      • 3. ‘Information technology--Biometric data interchange formats--19794-Part 7: signature/sign time series data’, 2014.
    25. 25)
      • 31. Nagar, A., Rane, S., Vetro, A.: ‘Privacy and security of features extracted from minutiae aggregates’. IEEE Int. Conf. on Acoustics Speech & Signal Processing, Dallas, TX, USA, 2010, pp. 18261829.
    26. 26)
      • 42. http://www.neurotechnology.com/verifinger.html.
    27. 27)
      • 10. Ahmad, T., Hu, J., Wang, S.: ‘Pair-polar coordinate-based cancelable fingerprint templates’, Pattern Recognit., 2011, 44, (10–11), pp. 25552564.
    28. 28)
      • 15. Li, C., Hu, J.: ‘A security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structures’, IEEE Trans. Inf. Forensic Secur., 2015, 11, (3), pp. 543555.
    29. 29)
      • 14. Wang, S., Hu, J.: ‘A blind system identification approach to cancelable fingerprint templates’, Pattern Recognit., 2016, 54, pp. 1422.
    30. 30)
      • 4. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Minutia cylinder-code: a new representation and matching technique for fingerprint recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21282141.
    31. 31)
      • 17. Dodis, Y., Reyzin, L., Smith, A.: ‘Fuzzy extractors: how to generate strong keys from biometrics and other noisy data’. Int. Conf. on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2004, pp. 523540.
    32. 32)
      • 32. Bringer, J., Despiegel, V.: ‘Binary feature vector fingerprint representation from minutiae vicinities’. IEEE Int. Conf. on Biometrics: Theory Applications & Systems, Washington, DC, USA, 2010, pp. 16.
    33. 33)
      • 6. Nandakumar, K., Jain, A.K.: ‘Biometric template protection: bridging the performance gap between theory and practice’, IEEE Signal Process. Mag., 2015, 32, (5), pp. 88100.
    34. 34)
      • 12. Yang, W., Wang, S., Hu, J., et al: ‘A fingerprint and finger-vein based cancelable multi-biometric system’, Pattern Recognit., 2018, 78, pp. 242251.
    35. 35)
      • 24. Jain, A.K., Prabhakar, S., Hong, L., et al: ‘Filterbank-based fingerprint matching’, IEEE Trans. Image Process., 2000, 9, (5), pp. 846859.
    36. 36)
      • 21. Liu, E., Zhao, Q.: ‘Encrypted domain matching of fingerprint minutia cylinder-code (MCC) with l1 minimization’, Neurocomputing, 2017, 259, pp. 313.
    37. 37)
      • 8. Sandhya, M., Prasad, M.V.: ‘k-nearest neighborhood structure (k-NNS) based alignment-free method for fingerprint template protection’. Int. Conf. on Biometrics, Phuket, Thailand, 2015, pp. 386393.
    38. 38)
      • 38. Wong, W.J., Teoh, A.B., Kho, Y.H., et al: ‘Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template’, Pattern Recognit., 2016, 51, pp. 197208.
    39. 39)
      • 11. Ratha, N.K., Chikkerur, S., Connell, J.H., et al: ‘Generating cancelable fingerprint templates’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 561572.
    40. 40)
      • 35. Wang, S., Hu, J.: ‘Alignment-free cancelable fingerprint template design: A densely infinite-to-one mapping (DITOM) approach’, Pattern Recognit., 2012, 45, (12), pp. 41294137.
    41. 41)
      • 40. Von Luxburg, U.: ‘A tutorial on spectral clustering’, Stat. Comput., 2007, 17, (4), pp. 395416.
    42. 42)
      • 20. Yang, W., Hu, J., Wang, S., et al: ‘An alignment-free fingerprint bio-cryptosystem based on modified Voronoi neighbor structures’, Pattern Recognit., 2014, 47, (3), pp. 13091320.
    43. 43)
      • 45. Lai, Y.L., Jin, Z., Teoh, A.B.J., et al: ‘Cancellable iris template generation based on indexing-first-one hashing’, Pattern Recognit., 2017, 64, pp. 105117.
    44. 44)
      • 25. Tico, M., Kuosmanen, P.: ‘Fingerprint matching using an orientation-based minutia descriptor’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (8), pp. 10091014.
    45. 45)
      • 7. Wahab, A., Chin, S., Tan, E.: ‘Novel approach to automated fingerprint recognition’, IEE Proc. Vis. Image Signal Process., 1998, 145, (3), pp. 160166.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.1025
Loading

Related content

content/journals/10.1049/iet-ipr.2020.1025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading