access icon free Novel framework for automatic localisation of gun carrying by moving person using various indoor and outdoor mimic and real-time views/Scenes

Hand held gun detection has an important application in both the field of video forensic and surveillance, because, gun is operative by hand only while committing any crime with it. The significant application encompasses the vulnerable places, such as around airport, marketplace, shopping malls, etc. In view of non-availability of relevant public data set, this study provides a newly created mimicked video data set for detection of gun carried by a person and entitled as Tripura University Video Data set for Crime-Scene-Analysis (TUVD-CSA). Effects of illumination, occlusion, rotation, pan, tilt, scaling of gun are effectively demonstrated in it. Moreover, the authors proposed an Iterative Model Generation Framework (IMGF) for gun detection, which is immune to scaling and rotation. Instead of locating the best matched object (gun) in the whole reference image to a query model via exhaustive search, IMGF searches only where the moving person carrying gun appears, which drastically reduces the computational overhead associated with a general template matching scheme. This has been employed by the background subtraction algorithm. Experimental results demonstrate that the proposed IMGF performs efficiently in gun detection with lesser number of true-negatives compared with the state-of-the-art methods.

Inspec keywords: image segmentation; video signal processing; object detection; feature extraction; video surveillance; visual databases; image matching

Other keywords: gun appears; moving person; newly created mimicked video data; gun detection algorithms; Crime-Scene-Analysis; relevant public data; Iterative Model Generation Framework; Tripura University Video Data; surveillance; gun carrying; significant application

Subjects: Optical, image and video signal processing; Spatial and pictorial databases; Computer vision and image processing techniques; Video signal processing; Image recognition

References

    1. 1)
      • 10. Ha, J.E, ., Lee, W.: ‘Foreground objects detection using multiple difference images’, Opt. Eng., 2010, 49, (4), p. 047201.
    2. 2)
      • 38. Dubey, S.: ‘Building a Gun Detection Model Using Deep Learning’. Program Chair & Proceedings Editor: M. Afzal Upal, PhD Chair of Computing & Information Science Department Mercyhurst University 501 E 38th St, Erie, PA, USA, 16546.
    3. 3)
      • 35. Capar, A., Kurt, B., Gokmen, M.: ‘Gradient-based shape descriptors’, Mach. Vis. Appl., 2009, 20, (6), pp. 365378.
    4. 4)
      • 5. Tiwari, R.K., Verma, G.K.: ‘A computer vision based framework for visual gun detection using harris interest point detector’, Proc. Comput. Sci., 2015, 54, pp. 703712.
    5. 5)
      • 6. Glowacz, A., Kmiec, M., Dziech, A.: ‘Visual detection of knives in security applications using active appearance models’, Multimedia Tools Appl., 2015, 74, (12), pp. 42534267.
    6. 6)
      • 40. Romero, D., Salamea, C.: ‘Design and proposal of a database for firearms detection’. The Int. Conf. on Advances in Emerging Trends and Technologies, 27 March 2019, pp. 348360.
    7. 7)
      • 41. Redmon, J., Farhadi, A.: ‘YOLO9000: better, faster, stronger’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 7263727.
    8. 8)
      • 24. Halima, N.B., Hosam, O.: ‘Bag of words based surveillance system using support vector machines’, Int. J. Secur. Appl., 2016, 10, (4), pp. 331346.
    9. 9)
      • 20. ‘UPDATE: CPRC Original Research: All but two of the 25 ..’. [Online], Available: https://crimeresearch.org/2018/02/with-39-killed-in-tunisia-attack-the-top-three-mass-public-shootings-are-outside-the-united-states/, Accessed: 01-May-2019.
    10. 10)
      • 32. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: ‘Universal background subtraction using word consensus models’, IEEE Trans. Image Process., 2016, 25, (10), pp. 47684781.
    11. 11)
      • 16. Maksimova, A.: ‘Knife detection scheme based on possibilistic shell clustering’. Int. Conf. on Multimedia Communications, Services and Security, Berlin, Germany, 6 June 2013, pp. 144152.
    12. 12)
      • 17. Asnani, S., Ahmed, A., Manjotho, A.A.: ‘Bank security system based on weapon detection using HOG features’, Asian J. Eng. Sci. Technol., 2014, 4, (1), pp. 2329.
    13. 13)
      • 36. Lowe, D.G.: ‘Object recognition from local scale-invariant features’. Proc. of the seventh IEEE Int. Conf. on Computer Vision, Kerkyra, Greece, 20 September 1999, vol. 2, pp. 11501157.
    14. 14)
      • 37. Maddalena, L., Petrosino, A.: ‘Background subtraction for moving object detection in RGBD data: a survey’, J. Imaging, 2018, 4, (5), p. 71.
    15. 15)
      • 1. Welsh, B.C., Farrington, D.P.: ‘Public area CCTV and crime prevention: an updated systematic review and meta–analysis’, Justice Q., 2009, 26, (4), pp. 716745.
    16. 16)
      • 11. Barnich, O., Van, D.M.: ‘ViBe: a universal background subtraction algorithm for video sequences’, IEEE Trans. Image Process., 2010, 20, (6), pp. 17091724.
    17. 17)
      • 13. Grega, M., Matiolanski, A., Guzik, P., et al: ‘Automated detection of firearms and knives in a CCTV image’, Sensors, 2016, 16, (1), p. 47.
    18. 18)
      • 4. Ojha, S., Sakhare, S.: ‘Image processing techniques for object tracking in video surveillance-A survey’. 2015 Int. Conf. on Pervasive Computing (ICPC), Pune, India, 2015, pp. 16.
    19. 19)
      • 31. Maddalena, L., Petrosino, A.: ‘The 3dSOBS+ algorithm for moving object detection’, Comput. Vis. Image Underst., 2014, 122, pp. 6573.
    20. 20)
      • 21. ‘Main Page, Internet Movie Firearms Database – Guns in Movies, TV and Video Games’. Available at http://www.imfdb.org/wiki/Main_Page., accessed: 13-May-2019.
    21. 21)
      • 3. Murphy, T.: ‘The admissibility of CCTV evidence in criminal proceedings’, Int. Rev. Law Comput. Technol., 1999, 13, (3), pp. 383404.
    22. 22)
      • 7. Velastin, S.A., Boghossian, B.A., Vicencio-Silva, M.A.: ‘A motion-based image processing system for detecting potentially dangerous situations in underground railway stations’, Transp. Res. C, Emerg. Technol., 2006, 14, (2), pp. 96113.
    23. 23)
      • 27. Milne, R.: ‘Forensic intelligence’ (CRC Press, Boca Raton, FL, 2013).
    24. 24)
      • 28. ‘The PASCAL Visual Object Classes Homepage’, available: http://host.robots.ox.ac.uk/pascal/VOC/, accessed: 13-May-2019.
    25. 25)
      • 14. Tiwari, R.K., Verma, G.K.: ‘A computer vision based framework for visual gun detection using SURF’. 2015 Int. Conf. on Electrical, Electronics, Signals, Communication and Optimization (EESCO), Andhra Pradesh, India, January 2015, pp. 15.
    26. 26)
      • 25. Gelana, F., Yadav, A.: ‘Firearm detection from surveillance cameras using image processing and machine learning techniques’. Smart Innovations in Communication and Computational Sciences, Singapore, 2019, pp. 2534.
    27. 27)
      • 33. Javed, S., Mahmood, A, ., Al-Maadeed, S., et al: ‘Moving object detection in complex scene using spatiotemporal structured-sparse RPCA’, IEEE Trans. Image Process., 2018, 28, (2), pp. 10071022.
    28. 28)
      • 2. Gill, M., Spriggs, A.: 2005‘Assessing the impact of CCTV’. Home Office Research', Development and Statistics Directorate, London.
    29. 29)
      • 18. Planty, M, Truman, J.L.: ‘Firearm violence, 1993–2011’ (U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics, Washington, DC, 2013).
    30. 30)
      • 15. Kmiec, M., Glowacz, A., Dziech, A.: ‘Towards robust visual knife detection in images: active appearance models initialised with shape-specific interest points’. Int. Conf. on Multimedia Communications, Services and Security, Berlin, Germany, 31 May 2012, pp. 148158.
    31. 31)
      • 22. Olmos, R., Tabik, S., Herrera, F.: ‘Automatic handgun detection alarm in videos using deep learning’, Neurocomputing, 2018, 275, pp. 6672.
    32. 32)
      • 8. Ainsworth, T.: ‘Buyer Beware’. Security Oz, 2002, vol. 19, pp. 18–26.
    33. 33)
      • 29. Cuevas, C., Yanez, E.M., Garcia, N.: ‘Tool for semiautomatic labeling of moving objects in video sequences: TSLAB’, Sensors, 2015, 15, (7), pp. 1515915178.
    34. 34)
      • 34. Ballard, D.: ‘Generalizing the Hough transform to detect arbitrary shapes’, Pattern Recognit., 1981, 13, (2), pp. 111122.
    35. 35)
      • 30. Darker, I.T., Kuo, P., Yang, M.Y., et al: ‘Automation of the CCTV-mediated detection of individuals illegally carrying firearms: combining psychological and technological approaches’. Visual Information Processing XVIII, Orlando, FL, USA, 27 April 2009, vol. 7341, pp. 73410p.
    36. 36)
      • 19. Perkins, C.A.: ‘firearm use and violent crime’, 1993–2001' (U.S. Department of Justice, Washington, 2003).
    37. 37)
      • 39. Egiazarov, A.: ‘Firearm detection through component decomposition’. Master's thesis.
    38. 38)
      • 23. Ardizzone, E., Gallea, R., La Cascia, M., et al: ‘Combining top-down and bottom-up visual saliency for firearms localization’. 2014 Int. Conf. on Signal Processing and Multimedia Applications (SIGMAP), Vienna, Austria, 28 August 2014, pp. 2532.
    39. 39)
      • 9. Stauffer, C., Grimson, W.E.: ‘Adaptive background mixture models for real-time tracking’. Proc. 1999 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, 23 June 1999, vol. 2, pp. 246252.
    40. 40)
      • 12. Cheng, F.C., Huang, S.C., Ruan, S.J.: ‘Illumination-sensitive background modeling approach for accurate moving object detection’, IEEE Trans. Broadcast., 2011, 57, (4), pp. 794801.
    41. 41)
      • 26. Iqbal, J., Munir, M.A., Mahmood, A., et al: ‘Orientation Aware Object Detection with Application to Firearms’. arXiv preprint arXiv:1904.10032. 22 April 2019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0706
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading