Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automated detection of multiple structural changes of diabetic macular oedema in SDOCT retinal images through transfer learning in CNNs

Diabetic Maculopathy, the major cause of vision loss, occurs due to uncontrolled diabetes. This affects the retinal layers of the eye causing bleeding of vessels, which results in Diabetic Macular Edema (DME), macular detachment etc., Basically three structural changes are involved in DME viz., Cystoid Macular Edema (CME), Serous Macular Detachment (SMD) and Intra Retinal Fluid (IRF). These changes may also coexist with each other such as CME with SMD or CME with IRF etc. In this work, the retinal images acquired through Spectral Domain Optical Coherence Tomography (SDOCT) imaging modality, which would provide high level of precision and resolution of the retinal layers are utilized. An automated algorithm to detect and differentiate seven types of DME based on deep learning is implemented using transfer learning on three Convolutional Neural Networks (CNNs), ResNet 50, VGGNet and AlexNet. In detection of DME, ResNet 50 performs excellently well, when compared with Alexnet and VGGNet, because of its depth and skip connection features. The average values of the statistical parameters such as accuracy (0.993), F1 score (0.975), Mathews Correlation Coefficient(MCC)(0.972) of ResNet are high when compared to that of AlexNet and VGGNet

References

    1. 1)
      • 3. Ferris III, F.L., Patz, A.: ‘Macular edema. A complication of diabetic retinopathy’, Surv. Ophthalmol., 1984, 28, pp. 452461.
    2. 2)
    3. 3)
      • 24. Wu, Z., Shen, C., Van Den Hengel, A.: ‘Wider or deeper: revisiting the ResNet model for visual recognition’, Pattern Recognit., 2019, 90, pp. 119133.
    4. 4)
      • 5. Wilkinson, C.P., Ferris III, F.L., Klein, R.E., et al: ‘Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales’, Ophthalmology, 2003, 110, (9), pp. 16771682.
    5. 5)
      • 9. Lu, W., Tong, Y., Yu, Y., et al: ‘Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images’, Transl. Vis. Sci. Technol., 2018, 7, (6), pp. 4141.
    6. 6)
      • 14. Ji, Q., He, W., Huang, J., et al: ‘Efficient deep learning-based automated pathology identification in retinal optical coherence tomography images’, Algorithms, 2018, 11, (6), p. 88.
    7. 7)
      • 10. Lee, C.S., Baughman, D.M., Lee, A.Y.: ‘Deep learning is effective for classifying normal versus age-related macular degeneration OCT images’, Ophthalmology Retina, 2017, 1, (4), pp. 322327.
    8. 8)
      • 1. Pradeepa, R., Mohan, V.: ‘Prevalence of type 2 diabetes and its complications in India and economic costs to the nation’, Eur. J. Clin. Nutr., 2017, 71, (7), p. 816.
    9. 9)
      • 18. Alom, M.Z., Taha, T.M., Yakopcic, C., et al: ‘The history began from AlexNet: a comprehensive survey on deep learning approaches’, arXiv preprint, 2018, arXiv:1803.01164.
    10. 10)
      • 19. Padmasini, N., Umamaheswari, R., Yacin, S.M.: ‘Speckle noise reduction in spectral domain optical coherence tomography retinal images using anisotropic diffusion filtering’. 2014 IEEE Int. Conf. on Science Engineering and Management Research (ICSEMR), Chennai, India, 2014 November, pp. 15.
    11. 11)
      • 28. Velasco, J., Pascion, C., Alberio, J.W., et al: ‘A smartphone-based skin disease classification using MobileNet CNN’, arXiv preprint, 2019, rXiv:1911.07929.
    12. 12)
      • 21. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 19.
    13. 13)
      • 17. Drozdzal, M., Vorontsov, E., Chartrand, G., et al: ‘The importance of skip connections in biomedical image segmentation’, in ‘Deep learning and data labeling for medical applications’ (Springer, Cham, 2016), pp. 179187.
    14. 14)
      • 16. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770-778.
    15. 15)
      • 26. Fang, L., Cunefare, D., Wang, C., et al: ‘Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search’, Biomed. Opt. Express, 2017, 8, (5), pp. 27322744.
    16. 16)
      • 7. Gulshan, V., Peng, L., Coram, M., et al: ‘Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs’, J. Am. Med. Assoc., 2016, 316, p. 2402.
    17. 17)
      • 29. Obuchowski, N.A.: ‘Receiver operating characteristic curves and their use in radiology’, Radiology, 2003, 229, (1), pp. 38.
    18. 18)
      • 34. Zhou, L., Zhao, Y., Yang, J., et al: ‘Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images’, IET Image Process., 2017, 12, (4), pp. 563571.
    19. 19)
      • 23. Szegedy, C., Ioffe, S., Vanhoucke, V., et al: ‘Inception-V4, inception-ResNet and the impact of residual connections on learning’. Thirty-first AAAI Conf. on Artificial Intelligence, Mountain View, CA, USA, 2017 February, pp. 42784284.
    20. 20)
      • 25. Chen, Z., Xie, Z., Zhang, W., et al: ‘ResNet and model fusion for automatic spoofing detection’. INTERSPEECH, Graz, Austria, 2017 August, pp. 102106.
    21. 21)
      • 27. Chan, G.C., Muhammad, A., Shah, S.A., et al: ‘Transfer learning for diabetic macular edema (DME) detection on optical coherence tomography (OCT) images’. 2017 IEEE Int. Conf. on Signal and Image Processing Applications (ICSIPA), Perak Darul Ridzuan, Malaysia, 2017, pp. 493496.
    22. 22)
      • 4. Otani, T., Kishi, S., Maruyama, Y.: ‘Patterns of diabetic macular edema with optical coherence tomography’, Am. J. Ophthalmol., 1999, 127, (6), pp. 688693.
    23. 23)
      • 33. Chen, Z., Li, D., Shen, H., et al: ‘Automated retinal layer segmentation in OCT images of age-related macular degeneration’, IET Image Process., 2019, 13, (9), pp. 14011411.
    24. 24)
      • 22. Shrivastava, A., Sukthankar, R., Malik, J., et al: ‘Beyond skip connections: top-down modulation for object detection’, arXiv preprint, 2018, arXiv:1612.06851.
    25. 25)
      • 6. BuAbbud, J.C., Al-latayfeh, M.M., Sun, J.K.: ‘Optical coherence tomography imaging for diabetic retinopathy and macular edema’, Curr. Diab. Rep., 2010, 10, (4), pp. 264269.
    26. 26)
      • 8. Kermany, D.S., Goldbaum, M., Cai, W., et al: ‘Identifying medical diagnoses and treatable diseases by image-based deep learning’, Cell, 2018, 172, (5), pp. 11221131.
    27. 27)
      • 31. Roy, A.G., Conjeti, S., Karri, S.P.K., et al: ‘Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks’, Biomed. Opt. Express, 2017, 8, (8), pp. 36273642.
    28. 28)
      • 15. Karri, S.P.K., Chakraborty, D., Chatterjee, J.: ‘Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration’, Biomed. Opt. Express, 2017, 8, (2), pp. 579592.
    29. 29)
    30. 30)
      • 32. Xu, X., Lee, K., Zhang, L., et al: ‘Stratified sampling voxel classification for segmentation of intraretinal and subretinal fluid in longitudinal clinical OCT data’, IEEE Trans. Med. Imaging, 2015, 34, (7), pp. 16161623.
    31. 31)
      • 30. Wilkins, G.R., Houghton, O.M., Oldenburg, A.L.: ‘Automated segmentation of intraretinal cystoid fluid in optical coherence tomography’, IEEE Trans. Biomed. Eng., 2012, 59, (4), pp. 11091114.
    32. 32)
      • 12. Samagaio, G., Estévez, A., de Moura, J., et al: ‘Automatic macular edema identification and characterization using OCT images’, Comput. Methods Programs Biomed., 2018, 163, pp. 4763.
    33. 33)
      • 20. He, K., Sun, J.: ‘Convolutional neural networks at constrained time cost’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 53535360.
    34. 34)
      • 2. Atre, S.: ‘The burden of diabetes in India’, Lancet Global Health, 2019, 7, (4), p. e418.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0612
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0612
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address