Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automated unsupervised learning-based clustering approach for effective anomaly detection in brain magnetic resonance imaging (MRI)

This research study is intended to deliver effective magnetic resonance (MR) brain image segmentation, which is an ambiguous process in the domain of medical image analysis. In general, MR brain image comprises various tissue structures; and an accurate representation of the above-mentioned regions is essential to have a perfect identification of different grades of tumours, and obtaining effective demarcation of different areas in which the oedema portion is widespread. The accurate representation and identification of the abnormal regions in the MR images can be a vital tool for the radiologists and oncologists to proceed further with the treatment processes. This study aims in developing a novel automated approach that combines self-organising map and interval type-2 fuzzy logic clustering, providing ample knowledge to the clinicians in identifying the aberrant regions present in the patient brain. A non-invasive analysis blended with quicker segmentation results are proffered by the proposed methodology and its functioning abilities have been assessed using comparison metrics such as mean-squared error (MSE), peak signal-to-noise ratio (PSNR), processing time duration, and few other standard metrics. The proposed methodology has offered commendable MSE and PSNR values, which are 0.234778 and 54.847 dB, and it can be undeniably utilised for analysing the patient diseases.

References

    1. 1)
      • 25. Zadeh, L.A.: ‘Fuzzy logic’, Computer, 1988, 21, (4), pp. 8393.
    2. 2)
      • 34. Demirhan, A., Guler, I.: ‘Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation’, Eng. Appl. Artif. Intell., 2011, 24, (2), pp. 358367.
    3. 3)
      • 6. Teng, W.G., Chang, P.L.: ‘Identifying regions of interest in medical images using self-organizing maps’, J. Med. Syst., 2012, 36, (5), pp. 27612768.
    4. 4)
      • 19. Lampinen, J., Kostiainen, T.: ‘Self-organizing map in data-analysis – notes on over fitting and over interpretation’. Proc. ESANN'2000, Bruges, Belgium, 2000, pp. 239244.
    5. 5)
      • 2. Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., et al: ‘An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput., 2016, 38, pp. 190212.
    6. 6)
      • 33. Andac, H., Godze, U., Kutlay, K., et al: ‘Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radio surgery applications’, IEEE Trans. Med. Imaging, 2011, 31, (3), pp. 790804.
    7. 7)
      • 21. Ortiz, A., Palacio, A.A., Gorriz, J.M., et al: ‘Segmentation of brain MRI using SOM-FCM-based method and 3D statistical descriptors’, Comput. Math. Methods Med., 2013, 2013, pp. 112, Article ID 638563.
    8. 8)
      • 22. Alhoniemi, E., Himberg, J., Parhankagas, J., et al: ‘SOM toolbox for Matlab v2.0’ (Helsinki University of Technology, Finland, 2005).
    9. 9)
      • 24. Logeswari, T., Karnan, M.: ‘An improved implementation of brain tumor detection using segmentation based on soft computing’, J. Cancer Res. Exp. Oncol., 2010, 2, (1), pp. 006014.
    10. 10)
      • 5. Majeed, S., Gupta, A., Raj, D., et al: ‘Uncertain fuzzy self-organization based clustering: interval type-2 fuzzy approach to adaptive resonance theory’, Inf. Sci., 2018, 424, pp. 6990.
    11. 11)
      • 10. Helmy, A.K., El-Taweel, G. S.: ‘Image segmentation scheme based on SOM–PCNN in frequency domain’, Appl. Soft Comput., 2016, 40, p. 405415.
    12. 12)
      • 11. Gonzalez, C.I., Castro, J.R., Mendoza, O., et al: ‘Edge detection method based on interval type-2 fuzzy systems for color images’. 2015 Annual Conf. of the North American Fuzzy Information Processing Society (NAFIPS) Held Jointly with 2015 5th World Conf. on Soft Computing (WConSC), Redmond, WA, 2015, pp. 16.
    13. 13)
      • 32. Thomos, N., Boulgouris, N.V., Strintzis, M.G.: ‘Optimized transmission of JPEG2000 streams over wireless channels’, IEEE Trans. Image Process., 2006, 15, (1), pp. 5467.
    14. 14)
      • 7. Huang, Q., Chen, Y., Liu, L., et al: ‘On combining biclustering mining and AdaBoost for breast tumor classification’, IEEE Trans. Knowl. Data Eng., 2020, 32, (4), pp. 728738.
    15. 15)
      • 18. Kohonen, T.: ‘Self-organizing maps’ (Springer-Verlag, Berlin, Heidelberg, Germany, 2001, 3rd edn.).
    16. 16)
      • 8. Khan, A., Jaffar, M.A., Choi, T.S.: ‘SOM and fuzzy based color image segmentation’, Multimedia Tools Appl., 2013, 64, (2), pp. 331344.
    17. 17)
      • 28. Vishnuvarthanan, G., Rajasekaran, M.P.: ‘Segmentation of MR brain images for tumor extraction using fuzzy’, Curr. Med. Imaging Rev., 2013, 9, pp. 26.
    18. 18)
      • 1. Sinha, G.R., Patel, B.C.: ‘Medical image processing: concepts and applications’ (PHI Publications, India, 2014).
    19. 19)
      • 30. Aljahdali, S., Zanaty, E.A.: ‘Automatic fuzzy algorithms for reliable image segmentation’, Int. J. Comput. Appl., 2012, 19, pp. 110.
    20. 20)
      • 20. Ortiz, A., Gorriz, J.M., Ramirez, J., et al: ‘Unsupervised neural techniques applied to MR brain image segmentation’, Adv. Artif. Neural Syst., 2012, 2012, pp. 17, Article ID 457590.
    21. 21)
      • 15. Huang, Q., Huang, Y., Luo, Y., et al: ‘Segmentation of breast ultrasound image with semantic classification of superpixels’, Med. Image Anal., 2020, 61, p. 101657.
    22. 22)
      • 27. Alagarsamy, S., Kartheeban, K., Vishnuvarthanan, G., et al: ‘Multi-channeled MR brain image segmentation: A new automated approach combining BAT and clustering technique for better identification of heterogeneous tumors’, Biocybernetics Biomed. Eng., 2019, 39, (4), pp. 10051035.
    23. 23)
      • 35. Huang, Q., Huang, X., Kong, Z., et al: ‘Bi-phase evolutionary searching for biclusters in gene expression data’, IEEE Trans. Evol. Comput., 2019, 23, (5), pp. 803814.
    24. 24)
      • 16. Kohonen, T.: ‘Self-organized formation of topologically correct feature maps’, Biol. Cybern., 1982, 43, (1), pp. 5969.
    25. 25)
      • 13. Zarinbal, M., Turksen, L.B., Zarandi, M.F., et al: ‘Interval type-2 fuzzy image processing expert system for diagnosing brain tumors’. Norbert Wiener in the 21st Century (21CW), Boston, MA, USA, 2014, pp. 18.
    26. 26)
      • 23. Arsuaga, E., Díaz, F.: ‘Topology preservation in SOM’, Int. J. Math. Comput. Sci., 2005, 1, (1), pp. 1922.
    27. 27)
      • 14. AlZu'bi, S., Shehab, M.A., Al-Ayyoub, M., et al: ‘Parallel implementation of FCM based volume segmentation of 3D images’. 13th ACS/IEEE Int. Conf. on Computer Systems and Applications AICCSA, Agadir, Morocco, 2016, pp. 16.
    28. 28)
      • 26. Qiu, C., Xiao, J., Han, L., et al: ‘Enhanced interval type-2 fuzzy c-means algorithm with improved initial center’, Pattern Recognit. Lett., 2014, 38, pp. 8692.
    29. 29)
      • 4. Govindaraj, V., Murugan, P.R.: ‘A complete automated algorithm for segmentation of tissues and identification of tumor region in T1, T2, and FLAIR brain images using optimization and clustering techniques’, Int. J. Imaging Syst. Technol., 2014, 24, (4), pp. 313325.
    30. 30)
      • 12. Huang, Q.H., Yang, J., Feng, X.F., et al: ‘Automated trading point forecasting based on bicluster mining and fuzzy inference’, IEEE Trans. Fuzzy Syst., 2020, 28, (2), pp. 259272.
    31. 31)
      • 29. Welstead, S.T.: ‘Fractal and wavelet image compression techniques’ (SPIE Press, USA, 1999, 1st edn.).
    32. 32)
      • 3. Vishnuvarthanan, A., Rajasekaran, M.P., Govindaraj, V., et al: ‘Development of a combinational framework to concurrently perform tissue segmentation and tumor identification in T1-W, T2-W, FLAIR and MPR type magnetic resonance brain images’, Expert Syst. Appl., 2018, 95, pp. 280311.
    33. 33)
      • 9. Saha, S., Alok, A.K., Ekbal, A.: ‘Brain image segmentation using semi-supervised clustering’, Expert Syst. Appl., 2016, 52, pp. 5063.
    34. 34)
      • 17. Ortiz, A., Gorriz, J.M., Ramírezb, J., et al: ‘Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies’, Appl. Soft Comput., 2013, 13, pp. 26682682.
    35. 35)
      • 31. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice Hall USA, USA, 2008, 3rd edn.).
    36. 36)
      • 36. Kanas, V.G., Zacharaki, E.I., Davatzikos, C., et al: ‘A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker’, Biomed. Signal Proc. Control, 2015, 22, pp. 1930.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0597
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0597
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address