Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Super-pixel image segmentation algorithm based on adaptive equalisation feature parameters

Image segmentation is a key step in the process of image data processing. The quality of image segmentation will directly affect the accuracy of image cognitive understanding. The purpose of image segmentation is to divide the image into regions with specific semantics. For the simple linear iterative clustering (SLIC) algorithm, the feature equalisation parameters need to be set manually during image segmentation, which results in the lack of segmentation effects and slow processing time. By introducing the theory of intermediary mathematics, an improved adaptive SLIC super-pixel algorithm is proposed, which can adaptive generate characteristic equalisation parameters according to the specific situation of the image, thereby simplifying the operation steps and improving the image segmentation effect. After experimental verification and analysis, compared with the original SLIC algorithm and several other super-pixel contrast algorithms, the algorithm in this study can effectively shorten the processing time and achieve a better segmentation effect.

References

    1. 1)
      • 1. Ding, S.F., Jia, H.J., Shi, Z.Z.: ‘Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis’, Ruan Jian Xue Bao/J. Softw., 2014, 25, (9), pp. 20372049.
    2. 2)
      • 4. Yang, F., Lu, H., Yang, M.: ‘Robust superpixel tracking’, IEEE Trans. Image Process., 2014, 23, (4), pp. 16391651.
    3. 3)
      • 12. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905.
    4. 4)
      • 24. Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: ‘On-line retrainable neural networks: improving the performance of neural networks in image analysis problems’, IEEE Trans. Neural Netw., 2000, 11, (1), pp. 137155.
    5. 5)
    6. 6)
      • 25. Zhang, Z.Y., Duan, C.R., Tao Lin, T., et al: ‘GVFOM: a novel external force for active contour based image segmentation’, Inf. Sci., 2020, 506, pp. 118.
    7. 7)
      • 20. Chetna, D., Himanshu, N., Gaurav, K.: ‘Large scale graph evaluation for find communities in big data’, Procedia Comput. Sci., 2018, 132, pp. 263270.
    8. 8)
      • 22. Cheng, H.D., Jiang, X.H., Sun, Y., et al: ‘Color image segmentation: advances and prospects’, Pattern Recognit., 2001, 34, (12), pp. 22592281.
    9. 9)
    10. 10)
      • 8. Wang, G., Baets, B.D.: ‘Contour detection based on anisotropic edge strength and hierarchical superpixel contrast’, Signal Image Video Process., 2019, 11, pp. 19.
    11. 11)
      • 11. Nataliani, Y., Yang, M.S.: ‘Powered Gaussian kernel spectral clustering’, Neural Comput. Appl., 2019, 31, (1), pp. 557572.
    12. 12)
      • 14. Achantan, R., Shaji, A., Smith, K., et al: ‘Slic superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. PAMI, 2012, 34, (11), pp. 22742281.
    13. 13)
      • 7. Ahn, E., Kumar, A., Feng, D.G., et al: ‘Unsupervised deep transfer feature learning for medical image classification’. 2019 IEEE 16th Int. Symp. on Biomedical Imaging (ISBI 2019), Venezia ,Italy, 2019.
    14. 14)
      • 15. Ren, X., Malik, J.: ‘Learning a classification model for segmentation’. Int. IEEE Conf. on Computer Vision, Nice, France, 2003, pp. 1017.
    15. 15)
      • 13. Levinshtein, A., Stere, A., Kutulakos, K., et al: ‘Turbopixel: fast supepixels using geometric flow’, IEEE Trans. PAMI, 2009, 31, (12), pp. 22092297.
    16. 16)
      • 21. Haralick, R.M., Linda, G.S.: ‘Image segmentation techniques’, Comput. Vis. Graph. Image Process., 1985, 29, (1), pp. 100132.
    17. 17)
      • 19. Wu, Z., Leahy, R.: ‘An optimal graph theoretic approach to data clustering: theory and its application to image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (11), pp. 11011113.
    18. 18)
      • 3. Ding, S.F., Wu, F.L., Qian, J., et al: ‘Research on data stream clustering algorithms’, Artif. Intell. Rev., 2015, 43, (4), pp. 593600.
    19. 19)
      • 16. Pavel, R., Arjan, K.: ‘Real-time texturing for 6D object instance detection from RGB images’. 2019 IEEE Int. Symp. on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, People's Republic of China, 2019.
    20. 20)
      • 9. Halder, S., Ghosal, A., Conti, M.: ‘LiMCA: an optimal clustering algorithm for lifetime maximization of internet of things’, Wirel. Netw., 2019, 25, pp. 44594477.
    21. 21)
      • 23. Nikhil, R.P., Sankar, K.P.: ‘A review on image segmentation techniques’, Pattern Recognit., 1993, 26, (9), pp. 12771294.
    22. 22)
      • 26. Wang, W.J., Wanga, Y.Q., Wu, Y.W.: ‘Quantification of left ventricle via deep regression learning with contour guidance’, IEEE Access, 2019, 7, pp. 4791847928.
    23. 23)
      • 18. Boykov, Y., Veksler, O., Zabih, R.: ‘Fast approximate energy minimization via graph cuts’, IEEE Trans. PAMI, 2001, 23, (11), pp. 12221239.
    24. 24)
      • 10. Golub, G.H., Van, C.F.: ‘Matrix computations’ (JHU Press, Baltimore, 1984).
    25. 25)
      • 5. Gronchi, G., Guazzini, A., Massaro, E., et al: ‘Mapping cortical functions with a local community detection algorithm’, J. Complex Netw., 2018, 2, (4), pp. 637653.
    26. 26)
      • 17. Chen, Y.G., Zhang, M., Fan, D.M.: ‘Linear regression between CIE-lab color parameters and organic matter in soils of tea plantations’, Eurasian Soil Sci., 2018, 51, (2), pp. 199203.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0475
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address