access icon free Segmentation of brain magnetic resonance images using a novel fuzzy clustering based method

Segmentation of tissues in brain magnetic resonance (MR) images has a crucial role in computer-aided diagnosis (CAD) of various brain diseases. However, due to the complex anatomical structure and the presence of intensity non-uniformity (INU) artefact, the segmentation of brain MR images is considered as a complicated task. In this study, the authors propose a novel locally influenced fuzzy C-means (LIFCM) clustering for segmentation of tissues in MR brain images. The proposed method incorporates local information in the clustering process to achieve accurate labelling of pixels. A novel local influence factor is proposed, which estimates the influence of a neighbouring pixel on the centre pixel. Furthermore, they have introduced the kernel-induced distance in LIFCM, which deals with complex brain MR data and produces effective segmentation. To evaluate the performance of the proposed method, they have used one simulated and one real MRI data set. Extensive experimental findings suggest that the authors' method not only produces effective segmentation but also retains crucial image details. The statistical significance test has been further conducted to support their experimental observations.

Inspec keywords: brain; pattern clustering; diseases; image segmentation; medical image processing; fuzzy set theory; biomedical MRI

Other keywords: brain magnetic resonance images; LIFCM; MR brain images; clustering process; fuzzy clustering; local influence factor; brain MR data; brain diseases; brain MR images; local information; computer-aided diagnosis; centre pixel

Subjects: Biology and medical computing; Medical magnetic resonance imaging and spectroscopy; Optical, image and video signal processing; Patient diagnostic methods and instrumentation; Biomedical magnetic resonance imaging and spectroscopy; Computer vision and image processing techniques

References

    1. 1)
      • 26. Singh, C., Bala, A.: ‘A local zernike moment-based unbiased nonlocal means fuzzy C-means algorithm for segmentation of brain magnetic resonance images’, Expert Syst. Appl., 2019, 118, pp. 625639.
    2. 2)
      • 10. Bezdek, J.C., Ehrlich, R., Full, W.: ‘FCM: the fuzzy c-means clustering algorithm’, Comput. Geosci., 1984, 10, (2-3), pp. 191203.
    3. 3)
      • 9. Pham, T.X., Siarry, P., Oulhadj, H.: ‘A multi-objective optimization approach for brain MRI segmentation using fuzzy entropy clustering and region-based active contour methods’, Magn. Reson. Imaging, 2019, 61, pp. 4165.
    4. 4)
      • 25. Lu, Z., Qiu, Y., Zhan, T.: ‘Neutrosophic c-means clustering with local information and noise distance-based kernel metric image segmentation’, J. Vis. Commun. Image Represent., 2019, 58, pp. 269276.
    5. 5)
      • 32. Welch, B.L.: ‘The generalization of student's’ problem when several different population variances are involved', Biometrika, 1947, 34, (1/2), pp. 2835.
    6. 6)
      • 1. Sharma, N., Aggarwal, L.M.: ‘Automated medical image segmentation techniques’, J. Med. Phys./Assoc. Med. Phys. India, 2010, 35, (1), p. 3.
    7. 7)
      • 30. Muller, K.R., Mika, S., Ratsch, G., et al: ‘An introduction to kernel-based learning algorithms’, IEEE Trans. Neural Netw., 2001, 12, (2), pp. 181201.
    8. 8)
      • 17. Selvaraj, D., Dhanasekaran, R.: ‘Novel approach for segmentation of brain magnetic resonance imaging using intensity based thresholding’. Int. Conf. On Communication Control and Computing Technologies, Nagercoil, India, 2010, pp. 502507.
    9. 9)
      • 12. Cai, W., Chen, S., Zhang, D.: ‘Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation’, Pattern Recognit., 2007, 40, (3), pp. 825838.
    10. 10)
      • 8. Wang, L., Zhu, J., Sheng, M., et al: ‘Simultaneous segmentation and bias field estimation using local fitted images’, Pattern Recognit., 2018, 74, pp. 145155.
    11. 11)
      • 11. Szilagyi, L., Benyo, Z., Szilágyi, S.M., et al: ‘MR brain image segmentation using an enhanced fuzzy c-means algorithm’. Int. Conf. on the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 2003, vol. 1, pp. 724726.
    12. 12)
      • 14. Adhikari, S.K., Sing, J.K., Basu, D.K., et al: ‘Conditional spatial fuzzy c-means clustering algorithm for segmentation of MRI images’, Appl. Soft Comput., 2015, 34, pp. 758769.
    13. 13)
      • 7. Huang, C., Zeng, L.: ‘An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation’, PloS one, 2015, 10, (4), p. e0120399.
    14. 14)
      • 21. Lee, B., Yamanakkanavar, N., Choi, J.Y.: ‘Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture’, Plos one, 2020, 15, (8), p. e0236493.
    15. 15)
      • 18. Sujji, G.E., Lakshmi, Y., Jiji, G.W.: ‘MRI brain image segmentation based on thresholding’, Int. J. Adv. Comput. Res., 2013, 3, (1), p. 97.
    16. 16)
      • 16. Kouhi, A., Seyedarabi, H., Aghagolzadeh, A.: ‘Robust FCM clustering algorithm with combined spatial constraint and membership matrix local information for brain MRI segmentation’, Expert Syst. Appl., 2020, 146, p. 113159.
    17. 17)
      • 5. Ahmed, M.N., Yamany, S.M., Mohamed, N., et al: ‘A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data’, IEEE Trans. Med. Imaging, 2002, 21, (3), pp. 193199.
    18. 18)
      • 20. Min, H., Xia, L., Han, J., et al: ‘A multi-scale level set method based on local features for segmentation of images with intensity inhomogeneity’, Pattern Recognit., 2019, 91, pp. 6985.
    19. 19)
      • 2. Maclaren, J., Han, Z., Vos, S.B., et al: ‘Reliability of brain volume measurements: a test-retest dataset’, Sci. data, 2014, 1, p. 140037.
    20. 20)
      • 23. Bezdek, J.C.: ‘Objective function clustering’. Pattern Recognition with Fuzzy Objective Function Algorithms, Boston, MA, USA, 1981, pp. 4393.
    21. 21)
      • 6. Siyal, M.Y., Yu, L.: ‘An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI’, Pattern Recognit. Lett., 2005, 26, (13), pp. 20522062.
    22. 22)
      • 3. Vovk, U., Pernus, F., Likar, B.: ‘A review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, (3), pp. 405421.
    23. 23)
      • 19. Li, C., Huang, R., Ding, Z., et al: ‘A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20072016.
    24. 24)
      • 4. Tripathi, P.C., Bag, S.: ‘CNN-DMRI: a convolutional neural network for denoising of magnetic resonance images’, Pattern Recognit. Lett., 2020, 135, pp. 5763.
    25. 25)
      • 15. Singh, C., Bala, A.: ‘A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy’, Appl. Soft Comput., 2019, 76, pp. 156173.
    26. 26)
    27. 27)
      • 28. Li, C., Gore, J.C., Davatzikos, C.: ‘Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation’, Magn. Reson. Imaging, 2014, 32, (7), pp. 913923.
    28. 28)
      • 24. Narayanan, A., Rajasekaran, M.P., Zhang, Y., et al: ‘Multi-channeled MR brain image segmentation: a novel double optimization approach combined with clustering technique for tumor identification and tissue segmentation’, Biocybern. Biomed. Eng., 2019, 39, (2), pp. 350381.
    29. 29)
      • 13. Krinidis, S., Chatzis, V.: ‘A robust fuzzy local information c-means clustering algorithm’, IEEE Trans. Image Process., 2010, 19, (5), pp. 13281337.
    30. 30)
      • 22. Dolz, J., Desrosiers, C., Wang, L., et al: ‘Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation’, Comput. Med. Imaging Graph., 2020, 79, p. 101660.
    31. 31)
      • 29. Cover, T.M.: ‘Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition’, IEEE Trans. Electron. Comput., 1965, EC-14, (3), pp. 326334.
    32. 32)
      • 31. Qiu, C., Xiao, J., Yu, L., et al: ‘A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation’, Pattern Recognit. Lett., 2013, 34, (12), pp. 13291338.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0383
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0383
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading