access icon free Target object detection using chicken social-based deep belief network with hyperspectral imagery

Target object detection is an important research direction in the area of hyperspectral imaging (HSI) as it aims to detect the anomalies or objects in HSI. Some of the existing target object detection methods are merely suitable for HSI with low resolution as they failed to apply directly in the high-resolution HSI. Therefore, an effective target detection method named chicken social-based deep belief network (CS-based DBN) is proposed to achieve an automatic target object detection framework in the high-resolution HSI. The proposed CS-based DBN is developed by integrating the chicken swarm optimisation with the social ski-driver algorithm. The optimal solution for detecting the target object is revealed through the fitness function, which accepts the minimal error value as the best solution. Moreover, the weights of the DBN classifier are optimally trained based on the proposed algorithm to render an accurate and optimal solution in detecting the target objects. The proposed CS-based DBN obtained better performance through the facility of stochastic exploration in search space. Moreover, the results achieved using the proposed model in terms of accuracy, specificity, and sensitivity are 0.8950, 0.8940, and 0.9, respectively.

Inspec keywords: image resolution; belief networks; hyperspectral imaging; learning (artificial intelligence); optimisation; object detection

Other keywords: chicken social-based deep belief network; chicken swarm optimisation; target object detection methods; social ski-driver algorithm; high-resolution HSI; automatic target object detection framework; CS-based DBN

Subjects: Knowledge representation; Machine learning (artificial intelligence); Computer vision and image processing techniques; Optimisation techniques; Optimisation techniques; Optical, image and video signal processing

References

    1. 1)
      • 16. Chen, Y., Nasrabadi, N.M., Tran, T.D.: ‘Sparse representation for target detection in hyperspectral imagery’, IEEE. J. Sel. Top. Signal. Process., 2011, 5, (3), pp. 629640.
    2. 2)
      • 27. Yang, X., Li, Z., Chen, J.: ‘Spatially regularzied sparsecem for target detection in hyperspectral images’. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Valencia, Spain, 2018.
    3. 3)
      • 17. Li, W., Du, Q., Zhang, B.: ‘Combined sparse and collaborative representation for hyperspectral target detection’, Pattern Recognit., 2015, 48, pp. 39043916.
    4. 4)
      • 1. Gong, Z., Lin, H., Zhang, D., et al: ‘A frustum-based probabilistic framework for 3D object detection by fusion of LiDAR and camera data’, ISPRS J. Photogramm. Remote Sens., 2020, 159, pp. 90100.
    5. 5)
      • 13. Reed, I.S., Yu, X.: ‘Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (10), pp. 17601770.
    6. 6)
      • 30. Liu, J., Chung, F.L., Wang, S.: ‘Black hole entropic fuzzy clustering’, IEEE Trans. Syst. Man Cybern., Syst., 2017, 48, (9), pp. 16221636.
    7. 7)
      • 2. Sun, W., Yang, G., Li, J., et al: ‘Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection’, J. Appl. Remote Sens., 2018, 12, (1), pp. 1219.
    8. 8)
      • 8. Wang, Y.T., Huang, S.Q., Liu, D.Z., et al: ‘A new band removed selection method for target detection in hyperspectral image’, J. Opt., 2013, 42, (3), pp. 208213.
    9. 9)
      • 32. Dataset: University of Pavia. Available at http://lesun.weebly.com/hyperspectral-data-set.html.
    10. 10)
      • 15. Wang, Z., Zeng, J., Xie, X., et al: ‘Small target detection and window adaptive tracking based on continuous frame images in visible light background’, IOP Conf. Ser., Mater. Sci. Eng., 2020, 711, (1), p. 012087.
    11. 11)
      • 25. Cristin, R., Gladiss Merlin, N.R., Ramanathan, L., et al: ‘Image forgery detection using back propagation neural network model and particle swarm optimization algorithm’, Multimed. Res., 2020, 3, (1), pp. 2132.
    12. 12)
      • 19. Li, W., Wu, G., Du, Q.: ‘Transferred deep learning for hyperspectral target detection’. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, USA, 2017.
    13. 13)
      • 20. Li, W., Du, Q.: ‘Collaborative representation for hyperspectral anomaly detection’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (3), pp. 14631474.
    14. 14)
      • 29. Tharwat, A., Gabel, T.: ‘Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm’, Neural Comput. Appl., 2020, 32, pp. 69256938.
    15. 15)
      • 11. Santra, S., Mukherjee, P., Sardar, P., et al: ‘Object detection in clustered scene using point feature matching for non-repeating texture pattern’, in Basu, T.K., Goswami, S.K., Sanyal, N. (Eds.:) ‘Advances in control, signal processing and energy systems’ (Springer, Singapore, 2020), pp. 7996.
    16. 16)
      • 24. Srinivas, V., Ch, S.: ‘Hybrid particle swarm optimization-deep neural network model for speaker recognition’, Multimed. Res., 2020, 3, (1), pp. 110.
    17. 17)
      • 33. Setyawan, N., Mardiyah, N., Hidayat, K., et al: ‘Object detection of omnidirectional vision using PSO-neural network for soccer robot’. Proceeding of EECSI, Malang, Indonesia, 2018, pp. 117121.
    18. 18)
      • 26. Li, Y., Xu, J., Xia, R., et al: ‘A two-stage framework of target detection in high-resolution hyperspectral images’, Signal. Image. Video. Process., 2019, 13, pp. 13391346.
    19. 19)
      • 31. Zhang, W., Shan, S., Gao, W., et al: ‘Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition’. IEEE Int. Conf. on Computer Vision (ICCV'05), 2005, Beijing, People's Republic of China, vol. 1, pp. 786791.
    20. 20)
      • 6. Zhang, C., Kovacs, J.M.: ‘The application of small unmanned aerial systems for precision agriculture: a review’, Precis. Agric., 2012, 13, (6), pp. 693712.
    21. 21)
      • 14. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., et al: ‘A CFAR adaptive matched filter detection’, IEEE Trans. Aerosp. Electron. Syst., 1992, 28, (1), pp. 208216.
    22. 22)
      • 23. Sidike, P., Asari, V.K., Alam, M.S.: ‘Multiclass object detection with single query in hyperspectral imagery using class-associative spectral fringe-adjusted joint transform correlation’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (2), pp. 11961208.
    23. 23)
      • 10. Wang, Y., Huang, S., Liu, Z., et al: ‘Target detection for hyperspectral image based on multi-scale analysis’, J. Opt., 2016, 46, (1), pp. 7582.
    24. 24)
      • 21. Boukhriss, R.R., Fendri, E., Hammami, M.: ‘Moving object detection under different weather conditions using full-spectrum light sources’, Pattern Recognit. Lett., 2020, 129, pp. 205212.
    25. 25)
      • 7. Edelman, G.J., Gaston, E., Van Leeuwen, T.G., et al: ‘Hyperspectral imaging for non-contact analysis of forensic traces’, Forensic Sci. Int., 2012, 223, (1–3), pp. 2839.
    26. 26)
      • 22. Nasrabadi, N.M.: ‘Hyperspectral target detection: an overview of current and future challenges’, IEEE Signal Process. Mag., 2014, 31, (1), pp. 3444.
    27. 27)
      • 28. Meng, X., Liu, Y., Gao, X., et al: ‘A new bio-inspired algorithm: chicken swarm optimization’. Int. Conf. in Swarm Intelligence, Belgrade, Serbia, 2014, pp. 8694.
    28. 28)
      • 5. Liang, H.: ‘Advances in multispectral and hyperspectral imaging for archaeology and art conservation’, Appl. Phys. A, 2012, 106, (2), pp. 309323.
    29. 29)
      • 18. Schwieger, V., Kerekes, G., Lerke, O.: ‘Image-based target detection and tracking using image-assisted robotic total stations’, in Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (Eds.): ‘Machine vision and navigation’ (Springer, Cham, 2020), pp. 133169.
    30. 30)
      • 12. Kong, F., Wen, K., Li, Y.: ‘Regularized multiple sparse Bayesian learning for hyperspectral target detection’, J. Geo Vis. Spat. Anal., 2019, 3, (2).
    31. 31)
      • 3. Zhu, D., Du, B., Zhang, L.: ‘Binary-class collaborative representation for target detection in hyperspectral images’, IEEE Geosci. Remote Sens. Lett., 2019, 16, pp. 11001104.
    32. 32)
      • 4. Yan, L., Yamaguchi, M., Noro, N., et al: ‘A novel two-stage deep learning-based small-object detection using hyperspectral images’, Opt. Rev., 2019, 26, pp. 597606.
    33. 33)
      • 9. Kim, D.H., Lee, S., Jeon, J., et al: ‘Real-time purchase behavior recognition system based on deep learning-based object detection and tracking for an unmanned product cabinet’, Expert Syst. Appl., 2020, 143, p. 113063.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0344
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading