access icon free Intelligent monitoring method of water quality based on image processing and RVFL-GMDH model

The water quality, contaminant migration characteristics, and emissions quantity of pollutants in the basin would have a great impact on aquatic creatures, agricultural irrigation, human life, and so on. In the aquaculture industry, because water colour can reflect the species and number of phytoplankton in the water, the water quality type can be obtained by analysing the colour of the aquaculture water using image processing techniques. Therefore, this study proposes an intelligent monitoring approach for water quality. The critical features of water colour images are extracted, and then using the machine learning methods, an intelligent system for water quality monitoring is established based on the fused random vector functional link network (RVFL) and group method of data handling (GMDH) model. The proposed approach presents a superior performance relative to other state-of-the-art methods, and it achieves an average predicting accuracy of 96.19% on the feature dataset. Experimental findings demonstrate the validity of the proposed approach, and it is accomplished efficiently for the monitoring of water quality.

Inspec keywords: feature extraction; data handling; environmental monitoring (geophysics); learning (artificial intelligence); image fusion; environmental science computing; image colour analysis; aquaculture; water quality

Other keywords: intelligent monitoring method; water quality type; water colour images; image processing techniques; aquaculture water; intelligent monitoring approach; water quality monitoring

Subjects: Data handling techniques; Machine learning (artificial intelligence); Environmental science computing; Agriculture, forestry and fisheries computing; Computer vision and image processing techniques; Sensor fusion; Optical, image and video signal processing

References

    1. 1)
      • 32. Scardapane, S., Wang, D., Uncini, A.: ‘Bayesian random vector functional-link networks for robust data modeling’, IEEE Trans. Cybern., 2017, 48, (7), pp. 20492059.
    2. 2)
      • 13. Fang, Y., Zhao, J., Hu, L., et al: ‘Image classification toward breast cancer using deeply-learned quality features’, J. Vis. Commun. Image Represent., 2019, 64, p. 102609.
    3. 3)
      • 45. Szegedy, C., Vanhoucke, V., Ioffe, S., et al: ‘Rethinking the inception architecture for computer vision’, Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016.
    4. 4)
      • 8. Hemming, J., Rath, T.: ‘PA—precision agriculture: computer-vision-based weed identification under field conditions using controlled lighting’, J. Agric. Eng. Res., 2001, 78, (3), pp. 233243.
    5. 5)
      • 33. Cui, W., Zhang, L., Li, B., et al: ‘Received signal strength based indoor positioning using a random vector functional link network’, IEEE Trans. Ind. Inf., 2017, 14, (5), pp. 18461855.
    6. 6)
      • 1. Mulema, S.A., Carrión García, A.: ‘Monitoring of an aquatic environment in aquaculture using a MEWMA chart’, Aquaculture, 2019, 504, pp. 275280.
    7. 7)
      • 2. Orozco-Lugo, A.G., McLernon, D.C., Lara, M., et al: ‘Monitoring of water quality in a shrimp farm using a FANET’, Internet Things, 2020, p. 100170, DOI: https://doi.org/10.1016/j.iot.2020.100170.
    8. 8)
      • 28. Kessentini, Y., Besbes, M.D., Ammar, S., et al: ‘A two-stage deep neural network for multi-norm license plate detection and recognition’, Expert Syst. Appl., 2019, 136, pp. 159170.
    9. 9)
      • 7. Romić, D., Castrignanò, A., Romić, M., et al: ‘Modelling spatial and temporal variability of water quality from different monitoring stations using mixed effects model theory’, Sci. Total Environ., 2020, 704, p. 135875.
    10. 10)
      • 30. Ren, Y., Suganthan, P.N., Srikanth, N., et al: ‘Random vector functional link network for short-term electricity load demand forecasting’, Inf. Sci., 2016, 367, pp. 10781093.
    11. 11)
      • 11. Gökmen, V., Sügüt, I.: ‘A non-contact computer vision based analysis of color in foods’, Int. J. Food Eng., 2007, 3, (5), pp. 113.
    12. 12)
      • 21. Hong, W., Shao, L., Yin, Q.: ‘Decision hierarchical classification by FLD for vegetation application using PolSAR features’. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, USA, 2017.
    13. 13)
      • 9. Suh, H.K., IJsselmuiden, J., Hofstee, J.W., et al: ‘Transfer learning for the classification of sugar beet and volunteer potato under field conditions’, Biosyst. Eng., 2018, 174, pp. 5065.
    14. 14)
      • 34. Zhang, P.-B., Yang, Z.-X.: ‘A new learning paradigm for random vector functional-link network: RVFL+’, Neural Netw., 2020, 122, pp. 94105.
    15. 15)
      • 42. Merz, C.J., Murphy, P.M.: ‘UCI repository of machine learning database’, https://www.ics.uci.edu/mlearn/MLRepository.html, 1996.
    16. 16)
      • 35. Mueller, J.-A., Lemke, F.: ‘Self-organising data mining: an intelligent approach to extract knowledge from data’, Hamburg: Libri, 2000.
    17. 17)
      • 43. Huang, G., Liu, Z., Van Der Maaten, L., et al: ‘Densely connected convolutional networks’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017.
    18. 18)
      • 20. Deepa, S., Umarani, R.: ‘Steganalysis on images using SVM with selected hybrid features of gini index feature selection algorithm’, Int. J. Adv. Res. Comput. Sci., 2017, 8, (5), pp. 15031509.
    19. 19)
      • 18. Li, X., Hu, Y., Li, M., et al: ‘Fault diagnostics between different type of components: A transfer learning approach’, Appl. Soft Comput., 2020, 86, p. 105950.
    20. 20)
      • 47. Russakovsky, O., Deng, J., Su, H., et al: ‘Imagenet large scale visual recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211252.
    21. 21)
      • 23. Jain, V., Phophalia, A.: ‘Exponential weighted random forest for hyperspectral image classification’. IGARSS 2019–2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, 2019.
    22. 22)
      • 10. Kaur, S., Pandey, S., Goel, S.: ‘Semi-automatic leaf disease detection and classification system for soybean culture’, IET Image Process., 2018, 12, (6), pp. 10381048.
    23. 23)
      • 3. Ma, Z., Li, H., Ye, Z., et al: ‘Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of dalian, China’, Mar. Pollut. Bull., 2020, 157, p. 111285.
    24. 24)
      • 19. Guettari, N., Capelle-Laizé, A.S., Carré, P.: ‘Blind image steganalysis based on evidential k-nearest neighbors’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, AZ, USA, 2016.
    25. 25)
      • 24. Guo, A.J., Zhu, F.: ‘Spectral-spatial feature extraction and classification by ANN supervised with center loss in hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2018, 57, (3), pp. 17551767.
    26. 26)
      • 16. Duan, Y., Liu, F., Jiao, L., et al: ‘SAR image segmentation based on convolutional-wavelet neural network and markov random field’, Pattern Recognit., 2017, 64, pp. 255267.
    27. 27)
      • 37. Xiao, J., Cao, H., Jiang, X., et al: ‘GMDH-based semi-supervised feature selection for customer classification’, Knowl.-Based Syst., 2017, 132, pp. 236248.
    28. 28)
      • 17. Cheng, L., Zhang, X., Shen, J.: ‘Road surface condition classification using deep learning’, J. Vis. Commun. Image Represent., 2019, 64, p. 102638.
    29. 29)
      • 15. Deng, H., Diao, Y., Wu, W., et al: ‘A high-speed D-CART online fault diagnosis algorithm for rotor systems’, Appl. Intell., 2019, 50, pp. 113.
    30. 30)
      • 38. Anaconda. Available at: https://www.anaconda.com/ (accessed on 17 Nov., 2019).
    31. 31)
      • 36. He, C.-Z., Wu, J., Müller, J.-A.: ‘Optimal cooperation between external criterion and data division in GMDH’, Int. J. Syst. Sci., 2008, 39, (6), pp. 601606.
    32. 32)
      • 39. scikit-learn. Available at: https://scikit-learn.org/stable/ (accessed on 17 Nov., 2019).
    33. 33)
      • 46. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.
    34. 34)
      • 27. Raza, S., Mokhlis, H., Arof, H., et al: ‘Minimum-features-based ANN-PSO approach for islanding detection in distribution system’, IET Renew. Power Gener., 2016, 10, (9), pp. 12551263.
    35. 35)
      • 22. Madgi, M., Danti, A., Anami, B.: ‘Recognition of green colour vegetables’ images using an artificial neural network’. 2019 Int. Conf. on Data Science and Communication (IconDSC), Bangalore, India, 2019.
    36. 36)
      • 12. Miki, Y., Muramatsu, C., Hayashi, T., et al: ‘Classification of teeth in cone-beam CT using deep convolutional neural network’, Comput. Biol. Med., 2017, 80, pp. 2429.
    37. 37)
      • 26. Haddad, R.J., Guha, B., Kalaani, Y., et al: ‘Smart distributed generation systems using artificial neural network-based event classification’, IEEE Power Energy Technol. Syst. J., 2018, 5, (2), pp. 1826.
    38. 38)
      • 40. PyMC3. Available at: https://docs.pymc.io/ (accessed on 17 Nov., 2019).
    39. 39)
      • 31. Gorban, A.N., Tyukin, I.Y., Prokhorov, D.V., et al: ‘Approximation with random bases: pro et contra’, Inf. Sci., 2016, 364, pp. 129145.
    40. 40)
      • 25. Li, Y., Li, B., Gao, Z., et al: ‘Antimode collapse generative adversarial networks’, J. Electron. Imaging, 2019, 28, (2), p. 023020.
    41. 41)
      • 29. Pao, Y.-H., Park, G.-H., Sobajic, D.J.: ‘Learning and generalization characteristics of the random vector functional-link net’, Neurocomputing, 1994, 6, (2), pp. 163180.
    42. 42)
      • 44. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016.
    43. 43)
      • 41. GeForce GTX 1060. Available at: https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1060/specifications (accessed on 17 Jun, 2019).
    44. 44)
      • 6. Strobl, R.O., Robillard, P.D.: ‘Network design for water quality monitoring of surface freshwaters: A review’, J. Environ. Manage., 2008, 87, (4), pp. 639648.
    45. 45)
      • 14. Mondal, S., Bours, P.: ‘A study on continuous authentication using a combination of keystroke and mouse biometrics’, Neurocomputing, 2017, 230, pp. 122.
    46. 46)
      • 4. Raju, K., Raghu Sita, R., Harish Kumar Varma, G.: ‘Knowledge based real time monitoring system for aquaculture using IoT’. 2017 IEEE 7th Int. Advance Computing Conf. (IACC), Hyderabad, India, 2017.
    47. 47)
      • 5. Shuhong, C., Shijun, Z., Dianfan, Z.: ‘Water quality monitoring method based on feedback self correcting dense connected convolution network’, Neurocomputing, 2019, 349, pp. 301313.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0254
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading