Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved artificial bee colony algorithm with opposition-based learning

The artificial bee colony (ABC) algorithm is a biological-inspired optimisation algorithm proposed by Karaboga. Since its solution search equation is good at exploration but poor at exploitation, the ABC algorithm converges slowly and is easy to fall into local optimum. Inspired by opposition-based learning (OBL), the authors propose an improved ABC algorithm called opposition-based learning ABC (OLABC). In OLABC, firstly, the population would be initialised using OBL. Secondly, to ensure the diversity of the population during the iterative process, the solution search equation is employed to bee phase would be improved. Generate the opposite solution when the fitness value of the newly generated solution is smaller than the current solution, and then apply the greedy selection strategy to update the solution. Thirdly, the adaptive weight strategy is used to dynamically adjust the weight, balancing the global exploration and local exploitation capabilities of the algorithm. Experiments on a set of benchmark functions show that OLABC has better convergence speed and optimisation precision than the compared algorithms.

References

    1. 1)
      • 6. Lu, Y., Sun, N., Pan, X.: ‘Mobile sink-based path optimization strategy in wireless sensor networks using artificial bee colony algorithm’, IEEE Access, 2018, 7, pp. 1166811678.
    2. 2)
      • 16. Souravlias, D., Parsopoulos, K.E.: ‘Particle swarm optimization with neighborhood-based budget allocation’, Int. J. Mach. Learn. Cybern., 2016, 7, (3), pp. 451477.
    3. 3)
      • 10. Soylu, S., Danişman, K.: ‘Blood glucose control using an ABC algorithm-based fuzzy-PID controller’, Turkish J. Electr. Eng. Comput. Sci., 2018, 26, (1), pp. 172183.
    4. 4)
      • 9. Eroğlu, H., Aydin, M.: ‘Solving power transmission line routing problem using improved genetic and artificial bee colony algorithms’, Electr. Eng., 2018, 100, (3), pp. 21032116.
    5. 5)
      • 28. Aydin, D., Özyön, S., Yaşar, C., et al: ‘Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem’, Int. J. Electr. Power Energy Syst., 2014, 54, (1), pp. 144153.
    6. 6)
      • 22. Rajmohan, S., Natarajan, R.: ‘Group influence based improved firefly algorithm for design space exploration of datapath resource allocation. Appl. Intell., 2019, 49, (6), pp. 20842100.
    7. 7)
      • 4. Karaboga, D., Kaya, E.: ‘An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training’, Appl. Soft Comput., 2016, 49, pp. 423436.
    8. 8)
      • 34. Babaeizadeh, S., Ahmad, R.: ‘Enhanced constrained artificial bee colony algorithm for optimization problems’, Int. Arab. J. Inf. Technol., 2017, 14, (2), pp. 246253.
    9. 9)
      • 35. Choi, T.J., Lee, J.H., Youn, H.Y., et al: ‘Adaptive differential evolution with elite opposition-based learning and its application to training artificial neural networks’, Fundam. Inform., 2019, 164, (2-3), pp. 227242.
    10. 10)
      • 20. Gao, X.Z., Wang, X., Ovaska, S.J., et al: ‘A hybrid optimization method of harmony search and opposition-based learning. Eng. Optim., 2012, 44, (8), pp. 895914.
    11. 11)
      • 3. Yang, D., Liu, Y., Li, S., et al: ‘Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm’, Mech. Mach. Theory, 2015, 90, pp. 219229.
    12. 12)
      • 23. Mahdavi, S., Rahnamayan, S., Deb, K.: ‘Opposition based learning: a literature review’, Swarm. Evol. Comput., 2018, 39, pp. 123.
    13. 13)
      • 27. Xiang, W.L., An, M.Q.: ‘An efficient and robust artificial bee colony algorithm for numerical optimization’, Comput. Oper. Res., 2013, 40, (5), pp. 12561265.
    14. 14)
      • 14. Li, G., Lin, Q., Cui, L., et al: ‘A novel hybrid differential evolution algorithm with modified CoDE and JADE’, Appl. Soft Comput., 2016, 47, (C), pp. 577599.
    15. 15)
      • 13. Latorre, A., Muelas, S., José-María Peña, A: ‘MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test’, Soft Comput., 2011, 15, (11), pp. 21872199.
    16. 16)
      • 24. Akay, B., Karaboga, D.: ‘A modified artificial bee colony algorithm for real-parameter optimization’, Inf. Sci., 2012, 192, (1), pp. 120142.
    17. 17)
      • 26. Xiang, W.L., Meng, X.L., Li, Y.Z., et al: ‘An improved artificial bee colony algorithm based on the gravity model’, Inf. Sci., 2018, 429, pp. 4971.
    18. 18)
      • 17. Gong, D., Sun, J., Miao, Z.: ‘A set-based genetic algorithm for interval many-objective optimization problems’, IEEE Trans. Evol. Comput., 2016, 22, (1), pp. 4760.
    19. 19)
      • 11. Karaboga, D., Akay, B.: ‘A comparative study of artificial bee colony algorithm’, Appl. Math. Comput., 2009, 214, (1), pp. 108132.
    20. 20)
      • 32. Cao, J., Yin, B., Lu, X., et al: ‘A modified artificial bee colony approach for the 0–1 knapsack problem’, Appl. Intell., 2018, 48, (6), pp. 15821595.
    21. 21)
      • 19. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: ‘Opposition-based differential evolution’, IEEE Trans. Evol. Comput., 2008, 12, (1), pp. 6479.
    22. 22)
      • 5. Awan, S.M., Aslam, M., Khan, Z.A., et al: ‘An efficient model based on artificial bee colony optimization algorithm with neural networks for electric load forecasting’, Neural Comput. Appl., 2014, 25, (7-8), pp. 19671978.
    23. 23)
      • 7. Saracoglu, O.G., Bagis, A., Konar, M., et al: ‘ABC algorithm based fuzzy modeling of optical glucose detection’, Adv. Electr. Comput. Eng., 2016, 16, (3), pp. 3742.
    24. 24)
      • 36. Gao, W., Chan, F.T.S., Huang, L., et al: ‘Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood’, Inf. Sci., 2015, 316, pp. 180200.
    25. 25)
      • 15. Kennedy, J.: ‘Particle Swarm Optimization’, in Sammut, C., Webb, G.I. (Eds.): ‘Encyclopedia of Machine Learning’ (Springer, Boston, MA, USA, 2011), pp. 760766, https://doi.org/10.1007/978-0-387-30164-8_630.
    26. 26)
      • 29. Cao, Y., Lu, Y., Pan, X., et al: ‘An improved global best guided artificial bee colony algorithm for continuous optimization problems’, Cluster Comput., 2018, 22, (2), pp. 19.
    27. 27)
      • 21. Wang, H., Wu, Z., Rahnamayan, S., et al: ‘Enhancing particle swarm optimization using generalized opposition-based learning. Inf. Sci., 2011, 181, (20), pp. 46994714.
    28. 28)
      • 12. Storn, R., Price, K.: ‘Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, J. Global Optim., 1997, 11, (4), pp. 341359.
    29. 29)
      • 33. Tizhoosh, H.R., Ventresca, M.: ‘Oppositional concepts in computational intelligence’, in ‘Studies in computational intelligence’ (Springer, Berlin Heidelberg, Germany, 2008), p. 155, https://doi.org/10.1007/978-3-540-70829-2.
    30. 30)
      • 30. Zhu, G., Kwong, S.: ‘Gbest-guided artificial bee colony algorithm for numerical function optimization’, Appl. Math. Comput., 2010, 217, (7), pp. 31663173.
    31. 31)
      • 1. Karaboga, D., Basturk, B.: ‘A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm’, J. Global Optim., 2007, 39, (3), pp. 459471.
    32. 32)
      • 18. Tizhoosh, H.R.: ‘Opposition-based learning: a new scheme for machine intelligence’. Int. Conf. on Computational Intelligence for Modelling, Control and Automation and Int. Conf. on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vienna, Austria, 2005, vol. 1, pp. 695701.
    33. 33)
      • 25. Cui, L., Li, G., Wang, X., et al: ‘A ranking-based adaptive artificial bee colony algorithm for global numerical optimization’, Inf. Sci., 2017, 417, pp. 169185.
    34. 34)
      • 2. Khomri, B., Christodoulidis, A., Djerou, L., et al: ‘Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm’, IET Image Process., 2018, 12, (12), pp. 21632171.
    35. 35)
    36. 36)
      • 31. Ozturk, C., Hancer, E., Karaboga, D.: ‘A novel binary artificial bee colony algorithm based on genetic operators’, Inf. Sci., 2015, 297, (C), pp. 154170.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2020.0111
Loading

Related content

content/journals/10.1049/iet-ipr.2020.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address