Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Deep learning-based automated detection of human knee joint's synovial fluid from magnetic resonance images with transfer learning

As an analytic tool in medicine, particularly in radiology, deep learning is gaining much attention and opening a new way for disease diagnosis. Nonetheless, it is rather challenging to acquire large-scale detailed labelled datasets in the field of medical imaging. In fact, transfer learning provides a possible way to resolve this issue to a certain extent such that the parameter learning of a neural network starts with its pre-trained weights learned from a large-scale dataset of certain similar task, and fine-tunes on a small comprehensively annotated dataset for the particular target task. The main aim of this study is to apply the deep learning model to detect the synovial fluid of human knee joint from magnetic resonance images. A specialized convolutional neural network architecture is proposed for automated detection of human knee joint's synovial fluid. Two independent datasets are used in the training, development, and evaluation of the proposed model. It is demonstrated by the experimental results that the proposed model obtains high sensitivity, specificity, precision, and accuracy to the detection of human knee joint's synovial fluid. As a result, this proposed approach provides a novel and feasible way for automating and expediting the synovial fluid analysis.

References

    1. 1)
      • 4. Russakovsky, O., Deng, J., Su, H., et al:Imagenet large scale visual recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211252.
    2. 2)
      • 25. Fix, E., Hodges, L.J.: ‘Discriminatory analysis. Nonparametric discrimination: consistency properties’. Tech. Rep. 4, USAF School of Aviation Medicine, Randolph Field, Texas, USA, 1951.
    3. 3)
      • 38. Abadi, M., Agarwal, A., Barham, P., et al: ‘Tensorflow: large-scale machine learning on heterogeneous distributed systems’, 2016.
    4. 4)
      • 17. Javadi, S., Mirroshandel, S.A.: ‘A novel deep learning method for automatic assessment of human sperm images’, Comput. Biol. Med., 2019, 109, pp. 182194.
    5. 5)
      • 40. Yu, F., Koltun, V.: ‘Multi-scale context aggregation by dilated convolutions’. ICLR, San Juan, Puerto Rico, 2016.
    6. 6)
      • 3. Krizhevsky, A., Sutskever, I., Geoffrey, H.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems 25 (NIPS2012), Lake Tahoe, NV, USA, 2012, pp. 10971105.
    7. 7)
      • 9. Reicher, M., Rauschning, W., Gold, R., et al: ‘High-resolution magnetic resonance imaging of the knee joint: normal anatomy’, Am. J. Roentgenol., 1985, 145, pp. 895902.
    8. 8)
      • 15. Esteva, A., Robicquet, A., Ramsundar, B., et al: ‘A guide to deep learning in healthcare’, Nat. Med., 2019, 25, pp. 2429doi:.
    9. 9)
      • 8. Lam, P., Marcin, J., Felman, A.: ‘What to know about MRI scans’, 2018. Available at: https://www.medicalnewstoday.com/articles/146309.php. [Accessed: 10-Dec-2018].
    10. 10)
      • 20. Esteva, A., Kuprel, B., Novoa, R.A., et al: ‘Dermatologist-level classification of skin cancer with deep neural networks’, Nature, 2017, 542, (7639), pp. 115118.
    11. 11)
      • 16. Acharya, U.R., Oh, S.L., Hagiwara, Y., et al: ‘A deep convolutional neural network model to classify heartbeats’, Comput. Biol. Med., 2017, 89, pp. 389396.
    12. 12)
      • 7. West, S.: ‘Rheumatology secrets’ (Elsevier Mosby, Philadelphia, 2015, 3rd edn.).
    13. 13)
      • 37. Huang, J., Rathod, V., Sun, C., et al: ‘Speed/accuracy trade-offs for modern convolutional object detectors’. in Proc. – 30th IEEE Conf. on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 2017, pp. 32963305.
    14. 14)
      • 10. Stoller, D.W., Genant, H.K.: ‘Magnetic resonance imaging of the knee and hip’, Arthritis Rheum., 1990, 33, (3), pp. 441449.
    15. 15)
      • 28. Boser, V.V.B., Guyon, I.: ‘A training algorithm for optimal margin classifiers’. Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 1992, pp. 144152.
    16. 16)
      • 36. Shin, H.-C., Roth, H.R., Gao, M., et al: ‘Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning’, IEEE Trans. Med. Imaging, 2016, 35, (5), pp. 12851298.
    17. 17)
      • 39. He, K., Gkioxari, G., Dollar, P., et al: ‘Mask R-CNN’. Proc. of the IEEE Int. Conf. on Computer Vision, Venice, Italy, 2017.
    18. 18)
      • 44. McHenry, M.C., Easley, K.A., Locker, G.A.: ‘Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals’, Clin. Infect. Dis., 2002, 34, (10), pp. 13421350.
    19. 19)
      • 2. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504507.
    20. 20)
      • 30. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016.
    21. 21)
      • 31. Chollet, F.: ‘Xception: deep learning with depthwise separable convolutions’. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017, pp. 18001807.
    22. 22)
      • 32. Szegedy, C., Ioffe, S., Vanhoucke, V., et al: ‘Inception-v4, inception-ResNet and the impact of residual connections on learning’. AAAI, San Francisco, CA, USA, 2017, pp. 42784284.
    23. 23)
      • 43. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: A simple way to prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1), pp. 19291958.
    24. 24)
      • 1. Everingham, M., Van Gool, L., Williams, C.K.I., et al: ‘The PASCAL visual object classes (VOC) challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338.
    25. 25)
      • 42. Qian, N.: ‘On the momentum term in gradient descent learning algorithms’, Neural Netw., 1999, 12, (1), pp. 145151.
    26. 26)
      • 12. Hospital, P.C.: ‘Department of orthopaedic surgery, PC hospital liaoning, China’.
    27. 27)
      • 26. Kononenko, I.: ‘Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition, in: current trends in knowledge adquisition’, Front. Artif. Intell. Appl., 1990, 8, pp. 190197.
    28. 28)
      • 11. Shanghai Hospital.: ‘Department of orthopedics, shanghai key laboratory of orthopedic implants, shanghai ninth people's hospital, shanghai jiaotong university, school of medicine, shanghai, China’.
    29. 29)
      • 13. Breheret, A.: ‘Pixel annotation tool’, 2017. Available at: https://github.com/abreheret/PixelAnnotationTool.
    30. 30)
      • 35. Thrun, S., Pratt, L.: ‘Learning to learn’ (Kluwer Academic Publishers, Boston, Mass, 1998).
    31. 31)
      • 34. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal covariate shift’, 2015.
    32. 32)
      • 5. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015.
    33. 33)
      • 22. Gulshan, V., Peng, L., Coram, M., et al: ‘Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs’, J. Am. Med. Assoc., 2016, 316, (22), pp. 24022410.
    34. 34)
      • 29. Riordon, J., Mccallum, C., Sinton, D.: ‘Deep learning for the classification of human sperm’, Comput. Biol. Med., 2019, 111, p. 103342doi:.
    35. 35)
      • 6. Bramlett, K.: ‘Knee joint’, 2018. Available at: http://www.bramlettorthopedics.com/conditions/knee. [Accessed: 04-Dec-2018].
    36. 36)
      • 19. Hernandez, V., Rezzoug, N., Gorce, P., et al: ‘Engineering force feasible set prediction with artificial neural network and musculoskeletal model’, Comput. Methods Biomech. Biomed. Engin., 2018, 21, (14), pp. 740749.
    37. 37)
      • 27. Quinlan, J.R.: ‘Induction of decision trees’, Mach. Learn., 1986, 1, (1), pp. 81106.
    38. 38)
      • 41. Kingma, D.P., Ba, J.L.: ‘Adam: A method for stochastic optimization’. Proc. of the 3rd Int. Conf. on Learning Representations, San Diego, CA, USA, 2015.
    39. 39)
      • 23. Poplin, R., Varadarajan, A.V., Blumer, K., et al: ‘Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning’, Nat. Biomed. Eng., 2018, 2, (3), pp. 158164.
    40. 40)
      • 14. Lin, T.-Y., Maire, M., Belongie, S., et al: ‘Microsoft COCO: common objects in context’. European Conf. on Computer Vision, Zürich, Switzerland, 2014, pp. 740755.
    41. 41)
      • 33. Nair, V., Hinton, G.E.: ‘Rectified linear units improve restricted Boltzmann machines’. Proc. of the 27th Int. Conf. on Machine Learning, Haifa, Israel, 2010, no. 3, pp. 807814.
    42. 42)
      • 24. Chang, V., Garcia, A., Hitschfeld, N., et al: ‘Gold-standard for computer-assisted morphological sperm analysis’, Comput. Biol. Med., 2017, 83, pp. 143150.
    43. 43)
      • 21. Szegedy, C., Vanhoucke, V., Ioffe, S., et al: ‘Rethinking the inception architecture for computer vision’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 28182826.
    44. 44)
      • 18. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. ICLR 2015, San Diego, CA, USA, 2015, pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.1646
Loading

Related content

content/journals/10.1049/iet-ipr.2019.1646
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address