Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combined mixed Gaussian model with pattern recognition in the automatic diagnosis of Alzheimer's disease

The diagnosis and prevention of Alzheimer's disease plays an important role in improving patient cognition. It can be seen from the current situation that the diagnosis of Alzheimer's disease is still poor because it is affected by many factors. Based on this, combined with the symptoms of Alzheimer's disease, this study used computer-aided to diagnose the symptoms of patients. First of all, this study analyses classical machine learning and chooses the appropriate model for diagnosis. Next, this study constructs a diagnostic system based on a mixed Gaussian model and uses a mixed Gaussian model to predict the probability of different distribution methods. Finally, this study designs experiments to analyse the performance of diagnostic models. Studies have shown that the mixed Gaussian model has a good effect on the automatic diagnosis of Alzheimer's disease, and can provide a theoretical reference for subsequent related research.

References

    1. 1)
      • 3. Sachs-Ericsson, N., Blazer, D.G.: ‘The new DSM-5 diagnosis of mild neurocognitive disorder and its relation to research in mild cognitive impairment’, Aging Ment. Health, 2015, 19, (1), pp. 212.
    2. 2)
      • 8. Galtier, I., Nieto, A., Lorenzo, J.N., et al: ‘Mild cognitive impairment in Parkinson's disease: diagnosis and progression to dementia’, J. Clin. Exp. Neuropsychol., 2016, 38, (1), pp. 4050.
    3. 3)
      • 24. Bachurin, S.O., Bovina, E.V., Ustyugov, A.A.: ‘Drugs in clinical trials for Alzheimer's disease: the major trends’, Med. Res. Rev., 2017, 37, (5), pp. 11861225.
    4. 4)
      • 10. Morimoto, S.S., Kanellopoulos, D., Manning, K.J., et al: ‘Diagnosis and treatment of depression and cognitive impairment in late life’, Ann. New York Acad. Sci., 2015, 1345, (1), pp. 3646.
    5. 5)
      • 5. Suk, H.I., Wee, C.Y., Lee, S.W., et al: ‘Supervised discriminative group sparse representation for mild cognitive impairment diagnosis’, Neuroinformatics, 2015, 13, (3), pp. 277295.
    6. 6)
      • 22. Fitzpatrick, A.W.P., Falcon, B., He, S., et al: ‘Cryo-EM structures of tau filaments from Alzheimer's disease’, Nature, 2017, 547, (7662), pp. 185190.
    7. 7)
      • 17. Srensen, L., Igel, C., Pai, A., et al: ‘Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry’, NeuroImage: Clin., 2017, 13, (1), pp. 470482.
    8. 8)
      • 9. Fessant, F., Pierret, C., Lantos, P.: ‘Influence of the APOE ɛ4 allele and mild cognitive impairment diagnosis in the disruption of the MEG resting state functional connectivity in sources space’, J. Alzheimers Disease Jad, 2015, 44, (2), pp. 493505.
    9. 9)
      • 14. Bouallègue, F.B., Mariano-Goulart, D.: ‘Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer's disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database’, Alzheimer's Res. Theory, 2017, 9, (1), p. 32.
    10. 10)
      • 2. Liu, M., Zhang, D., Shen, D.: ‘Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment’, IEEE Trans. Med. Imaging, 2016, 35, (6), pp. 14631474.
    11. 11)
      • 6. Zhang, Y., Zhang, H., Chen, X., et al: ‘Hybrid high-order functional connectivity networks using resting-state functional MRI for mild cognitive impairment diagnosis’, Sci. Rep., 2017, 7, (1), p. 6530.
    12. 12)
      • 16. Larner, A.J.: ‘Cognitive screening instruments for the diagnosis of mild cognitive impairment’, Prog. Neurol. Psychiatry., 2016, 20, (2), pp. 2126.
    13. 13)
      • 7. Rodríguez García, P.L., Rodríguez García, D.: ‘Diagnosis of vascular cognitive impairment and its main categories’, Neurología (English Edition), 2015, 30, (4), pp. 223239.
    14. 14)
      • 18. Guerrero, J.M., Martínez-Tomás, R., Rincón, M., et al: ‘Diagnosis of cognitive impairment compatible with early diagnosis of Alzheimer's disease’, Methods Inf. Med., 2016, 55, (1), pp. 4249.
    15. 15)
      • 27. Mohammed, G.: ‘Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network’, Front. Biosci., 2018, 23, (2), pp. 584596.
    16. 16)
      • 11. Mcgovern, A., Pendlebury, S.T., Mishra, N.K., et al: ‘Test accuracy of informant-based cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke’, Stroke, 2016, 47, (2), p. 329.
    17. 17)
      • 19. Lebowitz, B.K., Weinstein, C., Beiser, A., et al: ‘Lifelong reading disorder and mild cognitive impairment: implications for diagnosis’, J. Alzheimer's Disease Jad., 2015, 50, (1), p. 44.
    18. 18)
      • 23. Zenaro, E., Piacentino, G., Constantin, G.: ‘The blood-brain barrier in Alzheimer's disease’, Neurobiol. Dis., 2017, 107, (1), pp. 4156.
    19. 19)
      • 15. Abner, E.L., Kryscio, R.J., Schmitt, F.A., et al: ‘Outcomes after diagnosis of mild cognitive impairment in a large autopsy series’, Ann. Neurol., 2017, 81, (4), pp. 549559.
    20. 20)
      • 20. Serna, A., Contador, I., Bermejopareja, F., et al: ‘Accuracy of a brief neuropsychological battery for the diagnosis of dementia and mild cognitive impairment: an analysis of the NEDICES cohort’, J. Alzheimer's Disease Jad., 2015, 48, (1), pp. 163173.
    21. 21)
      • 4. Baiyewu, O., Unverzagt, F.W., Ogunniyi, A., et al: ‘Cognitive impairment in community-dwelling older Nigerians: clinical correlates and stability of diagnosis’, Eur. J. Neurol., 2015, 9, (6), pp. 573580.
    22. 22)
      • 26. Silverberg, N., Elliott, C., Ryan, L., et al: ‘NIA commentary on the NIA-AA research framework: towards a biological definition of Alzheimer's disease’, Alzheimer's Dementia, 2018, 14, (4), pp. 576578.
    23. 23)
      • 13. De Vriendt, P., Mets, T., Petrovic, M., et al: ‘Discriminative power of the advanced activities of daily living (a-ADL) tool in the diagnosis of mild cognitive impairment in an older population’, Int. Psychogeriatr., 2015, 27, (9), pp. 14191427.
    24. 24)
      • 25. Nakamura, A., Kaneko, N., Villemagne, V.L., et al: ‘High performance plasma amyloid-β biomarkers for Alzheimer's disease’, Nature, 2018, 554, (7691), p. 249.
    25. 25)
      • 1. Kalaria, R.N.: ‘Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer's disease’, Acta Neuropathol., 2016, 131, (5), pp. 659685.
    26. 26)
      • 12. Lobue, C., Denney, D., Hynan, L.S., et al: ‘Self-reported traumatic brain injury and mild cognitive impairment: increased risk and earlier age of diagnosis’, J. Alzheimer's Disease, 2016, 51, (3), pp. 727736.
    27. 27)
      • 21. Jack, C.R., Bennett, D.A., Blennow, K., et al: ‘NIA-AA research framework: toward a biological definition of Alzheimer's disease’, Alzheimer's Dementia, 2018, 14, (4), pp. 535562.
    28. 28)
      • 28. Novak, P., Schmidt, R., Kontsekova, E., et al: ‘Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 1 trial’, Lancet Neurol., 2017, 16, (2), p. 123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.1629
Loading

Related content

content/journals/10.1049/iet-ipr.2019.1629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address