access icon free Improved water quality mapping based on cross-fusion of Sentinel-2 and Landsat-8 imageries

This study proposed methods based on Sentinel-2 and Landsat-8 cross-fusion for improving water quality mapping (WQM). Therefore, four traditional fusion methods including intensity–hue–saturation, Gram–Schmidt transform, wavelet transform and Brovey transform and different scenarios of cross-fusion have been implemented. The proposed cross-fusion methods highly improved the correlation coefficient (CR) between the images and the water quality parameter (WQP). Considering the higher CR values, the created WQP maps showed very good accuracy, in which the root-mean-square error values were 0.03, 0.59, 0.96, 0.26 and 279.76 for potential hydrogen (PH), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD) and electrical conductivity (EC) maps, respectively. Also, the effect of considering 1 px value or the mean of a 3×3 window of the input images for calculating the regression models on the accuracy of the final maps was tested. Only the best outputs for mapping PH and DO parameters were based on applying the mean of a 3×3 window. The results also showed that increasing the window size could increase the computational complexity and decrease the WQM accuracy. Comparing the output maps with the traditional maps confirmed the higher accuracy of the proposed methods.

Inspec keywords: wavelet transforms; regression analysis; image fusion; water quality; geophysical techniques; image colour analysis; mean square error methods; geophysical signal processing; geophysical image processing; remote sensing

Other keywords: output maps; original images; cross-fusion methods; traditional fusion methods including intensity–hue–saturation; mapping PH; biological oxygen demand; water quality parameter; Gram–Schmidt transform; improved water quality mapping; traditional maps; WQP maps; WQM accuracy; input images; root-mean-square error values; dissolved oxygen; Landsat-8 imageries; electrical conductivity maps; higher CR values; chemical oxygen demand; final maps; Landsat-8 cross-fusion; Sentinel-2

Subjects: Water quality and water resources; Measurement techniques and instrumentation in environmental science; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Data and information; acquisition, processing, storage and dissemination in geophysics; Image processing and restoration; Probability theory, stochastic processes, and statistics

References

    1. 1)
      • 3. Jaelani, L.M., Ratnaningsih, R.Y.: ‘Spatial and temporal analysis of water quality parameter using Sentinel-2A data; case study: lake Matano and Towuti’, Int. J. Adv. Sci. Eng. Inf. Technol., 2018, 8, (2), pp. 547553.
    2. 2)
      • 18. Suwarsono, N., Prasasti, I., Nugroho, J.T., et al: ‘Detecting the lava flow deposits from 2018 Anak Krakatau eruption using data fusion Landsat-8 optic and Sentinel-1 SAR’, Int. J. Remote Sens. Earth Sci. (IJReSES), 2019, 15, (2), pp. 157166.
    3. 3)
      • 28. Fukuda, S., Hirosawa, H.: ‘A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (5), pp. 22822286.
    4. 4)
      • 5. Chen, J., Zhu, W., Tian, Y.Q., et al: ‘Remote estimation of colored dissolved organic matter and chlorophyll-a in lake Huron using Sentinel-2 measurements’, J. Appl. Remote Sens., 2017, 11, (3), p. 036007.
    5. 5)
      • 22. Karimi, D., Akbarizadeh, G., Rangzan, K., et al: ‘Effective supervised multiple-feature learning for fused radar and optical data classification’, IET Radar Sonar Navig., 2016, 11, (5), pp. 768777.
    6. 6)
      • 16. Feng, Q., Yang, J., Zhu, D., et al: ‘Integrating multitemporal Sentinel-1/2 data for coastal land cover classification using a multibranch convolutional neural network: a case of the Yellow River Delta’, Remote Sens., 2019, 11, (9), p. 1006.
    7. 7)
      • 27. Shahdoosti, H.R.: ‘Improved adaptive Brovey as a new method for image fusion’, arXiv preprint arXiv: 1807, 2018, p. 09610.
    8. 8)
      • 14. Bioresita, F., Puissant, A., Stumpf, A., et al: ‘Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping’, Int. J. Remote Sens., 2019, 40, (23), pp. 124.
    9. 9)
      • 9. Elhag, M., Gitas, I., Othman, A., et al: ‘Assessment of water quality parameters using temporal remote-sensing spectral reflectance in arid environments, Saudi Arabia’, Water, 2019, 11, (3), p. 556.
    10. 10)
      • 26. Huang, Z., Chen, Q., Chen, Q., et al: ‘Variational pansharpening for hyperspectral imagery constrained by spectral shape and Gram–Schmidt transformation’, Sensors, 2018, 18, (12), p. 4330.
    11. 11)
      • 21. Zhao, Y., Huang, B., Song, H.: ‘A robust adaptive spatial and temporal image fusion model for complex land surface changes’, Remote Sens. Environ., 2018, 208, pp. 4262.
    12. 12)
      • 19. Palsson, F., Sveinsson, J., Ulfarsson, M.: ‘Sentinel-2 image fusion using a deep residual network’, Remote Sens., 2018, 10, (8), p. 1290.
    13. 13)
      • 12. Dewidar, K., Khedr, A.A.: ‘Remote sensing of water quality for Burullus lake’, Egypt. Geocarto Int., 2005, 20, (3), pp. 4349.
    14. 14)
      • 23. Karimi, D., Rangzan, K., Akbarizadeh, G., et al: Combined algorithm for improvement of fused radar and optical data classification accuracy’, J. Electron. Imaging, 2017, 26, (1), p. 013017.
    15. 15)
      • 4. Blix, K., Pálffy, K.R., Tóth, V., et al: ‘Remote sensing of water quality parameters over lake Balaton by using Sentinel-3 OLCI’, Water, 2018, 10, (10), p. 1428.
    16. 16)
      • 29. Bhattacharyya, A., Sharma, M., Pachori, R.B., et al: ‘A novel approach for automated detection of focal EEG signals using empirical wavelet transform’, Neural Comput. Appl., 2018, 29, (8), pp. 4757.
    17. 17)
      • 15. Poortinga, A., Tenneson, K., Shapiro, A., et al: ‘Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification’, Remote Sens., 2019, 11, (7), p. 831.
    18. 18)
      • 7. Salem, S., Higa, H., Kim, H., et al: ‘Multi-algorithm indices and look-up table for chlorophyll-a retrieval in highly turbid water bodies using multispectral data’, Remote Sens., 2017, 9, (6), p. 556.
    19. 19)
      • 6. Liu, H., Li, Q., Shi, T., et al: ‘Application of Sentinel-2 MSI images to retrieve suspended particulate matter concentrations in Poyang lake’, Remote Sens., 2017, 9, (7), p. 761.
    20. 20)
      • 13. Rangzan, K., Kabolizadeh, M., Karimi, D., et al: ‘Supervised cross-fusion method: a new triplet approach to fuse thermal, radar, and optical satellite data for land use classification’, Environ. Monit. Assess., 2019, 191, (8), p. 481.
    21. 21)
      • 24. Pohl, C., Van Genderen, J. L.: ‘Remote-sensing image fusion: a practical guide’ (CRC Press, USA, 2016).
    22. 22)
      • 17. Liu, M., Yang, W., Zhu, X., et al: ‘An improved flexible spatiotemporal data fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series’, Remote Sens. Environ., 2019, 227, pp. 7489.
    23. 23)
      • 30. Zhang, X., Jiao, L., Liu, F., et al: ‘Spectral clustering ensemble applied to SAR image segmentation’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (7), pp. 21262136.
    24. 24)
      • 11. Toming, K., Kutser, T., Laas, A., et al: ‘First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery’, Remote Sens., 2016, 8, (8), p. 640.
    25. 25)
      • 1. Rani, M., Rehman, S., Sajjad, H., et al: ‘NIR-red algorithms-based model for chlorophyll-a retrieval in highly turbid inland Densu river basin in south–east Ghana, West Africa’, IET Image Process., 2019, 13, (8), pp. 13281332.
    26. 26)
      • 20. Padmanaban, R., Bhowmik, A.K., Cabral, P.: ‘Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city’, PLoS One, 2019, 14, (1), p. e0208949.
    27. 27)
      • 10. Page, B.P., Olmanson, L.G., Mishra, D.R.: ‘A harmonized image processing workflow using Sentinel-2/MSI and landsat-8/OLI for mapping water clarity in optically variable lake systems’, Remote Sens. Environ., 2019, 231, p. 111284.
    28. 28)
      • 25. Ravikanth, G., Sunitha, K.V.N., Reddy, B.E.: ‘Intensity–hue–saturation renovation and local deviation methods for satellite image fusion metric assessment’, Int. J. Appl. Pattern Recognit., 2018, 5, (4), pp. 280292.
    29. 29)
      • 8. Alikas, K., Kangro, K., Reinart, A.: ‘Detecting cyanobacterial blooms in large North European lakes using the maximum chlorophyll index’, Oceanologia, 2010, 52, (2), pp. 237257.
    30. 30)
      • 2. Yadav, S., Yamashiki, Y., Susaki, J., et al: ‘Chlorophyll estimation of lake water and coastal water using LANDSAT-8 and SENTINEL-2A satellite’, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2019, 42, (3/W7), pp. 7782.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.1503
Loading

Related content

content/journals/10.1049/iet-ipr.2019.1503
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading