Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Toward a general model for reflection recovery and single image enhancement

Images often suffer from low visual quality due to poor imaging conditions such as low light or hazy weather. The haze imaging model is widely used in contrast enhancement in daylight condition with haze, while the retinex model is universal for low-light conditions. Although their forms and applications are different, they can be unified into a more general form through the proposed observation. Based on this model, the authors can estimate the reflection of the scene more accurately in more complex imaging conditions. In this study, the authors propose a simple but effective method for estimating the reflection and enhancing the image contrast based on a general imaging model. To preserve the image details and control contrast, the authors introduce dark boundary and bright boundary to handle the high-light and low-light conditions, and a guided structure-preserving optimization algorithm is proposed to estimate them. After obtaining the dark and bright boundaries, the reflection is calculated and the image is enhanced accordingly. Different from previous approaches, which were designed for specific applications, the proposed method can be used for more diverse imaging conditions. Experiments show that the proposed method can be applied to many poor imaging conditions and maintain good performance.

References

    1. 1)
      • 17. Wang, W., Yuan, X., Wu, X., et al: ‘Fast image dehazing method based on linear transformation’, IEEE Trans. Multimed., 2017, 19, (6), pp. 11421155.
    2. 2)
      • 46. Shibata, T., Tanaka, M., Okutomi, M.: ‘Gradient-domain image reconstruction framework with intensity-range and base-structure constraints’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA., 2016, pp. 27452753.
    3. 3)
      • 34. Fu, G., Duan, L., Xiao, C.: ‘A hybrid l 2- l p variational model for single low-light image enhancement with bright channel prior’. 2019 IEEE Int. Conf. on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 19251929.
    4. 4)
      • 11. Kim, J.H., Jang, W.D., Sim, J.Y., et al: ‘Optimized contrast enhancement for real-time image and video dehazing’, J. Vis. Commun. Image Represent., 2013, 24, (3), pp. 410425.
    5. 5)
      • 9. Ancuti, C.O., Ancuti, C.: ‘Single image dehazing by multi-scale fusion’, IEEE Trans. Image Process., 2013, 22, (8), pp. 32713282.
    6. 6)
      • 29. Fu, X., Liao, Y., Zeng, D., et al: ‘A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation’, IEEE Trans. Image Process., 2015, 24, (12), pp. 49654977.
    7. 7)
      • 36. Galdran, A., Alvarez-Gila, A., Bria, A., et al: ‘On the duality between retinex and image dehazing’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA., 2018, pp. 82128221.
    8. 8)
      • 23. Land, E.H.: ‘The retinex theory of color vision’, Sci. Am., 1977, 237, (6), pp. 108129.
    9. 9)
      • 21. Berman, D., Treibitz, T., Avidan, S.: ‘Single image dehazing using haze-lines’, IEEE Trans. Pattern Anal. Mach. Intell., 2020, 42, (3), pp. 720734.
    10. 10)
      • 35. Dong, X., Wang, G., Pang, Y., et al: ‘Fast efficient algorithm for enhancement of low lighting video’. 2011 IEEE Int. Conf. on Multimedia and Expo, London, UK., 2011, pp. 16.
    11. 11)
      • 50. Mertens, T., Kautz, J., Van-Reeth, F.: ‘Exposure fusion’. 15th Pacific Conference on Computer Graphics and Applications (PG'07), Maui, HI, USA., 2007, pp. 382390.
    12. 12)
      • 4. Serikawa, S., Lu, H.: ‘Underwater image dehazing using joint trilateral filter’, Comput. Electr. Eng., 2014, 40, (1), pp. 4150.
    13. 13)
      • 10. He, K., Sun, J., Tang, X.: ‘Single image haze removal using dark channel prior’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 23412353.
    14. 14)
      • 2. Capra, A., Castrorina, A., Corchs, S., et al: ‘Dynamic range optimization by local contrast correction and histogram image analysis’. 2006 Digest of Technical Papers Int. Conf. on Consumer Electronics, Las Vegas, NV, USA., 2006, pp. 309310.
    15. 15)
      • 14. Chen, C., Do, M.N., Wang, J.: ‘Robust image and video dehazing with visual artifact suppression via gradient residual minimization’. European Conf. on Computer Vision.Springer, Amsterdam, The Netherlands, 2016, pp. 576591.
    16. 16)
      • 15. Cai, B., Xu, X., Jia, K., et al: ‘Dehazenet: an end-to-end system for single image haze removal’, IEEE Trans. Image Process., 2016, 25, (11), pp. 51875198.
    17. 17)
      • 42. Fattal, R., Lischinski, D., Werman, M.: ‘Gradient domain high dynamic range compression’, ACM Trans. Graphics (TOG), 2002, 21, pp. 249256.
    18. 18)
      • 48. Zuiderveld, K.: ‘Contrast limited adaptive histogram equalization’, Graphics Gems, 1994, 4, pp. 474485.
    19. 19)
      • 37. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted l1 minimization’, J. Fourier Anal. Appl., 2008, 14, (5-6), pp. 877905.
    20. 20)
      • 20. Berman, D., Treibitz, T., Avidan, S.: ‘Air-light estimation using haze-lines’. 2017 IEEE Int. Conf. on Computational Photography (ICCP), Stanford, CA, USA., 2017, pp. 19.
    21. 21)
      • 19. Li, Y., You, S., Brown, M.S., et al: ‘Haze visibility enhancement: a survey and quantitative benchmarking’, Comput. Vis. Image Underst., 2017, 165, pp. 116.
    22. 22)
      • 1. Reza, A.M.: ‘Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement’, J. VLSI Signal Process. Syst. Signal Image Video Technol., 2004, 38, (1), pp. 3544.
    23. 23)
      • 41. Durand, F., Dorsey, J.: ‘Fast bilateral filtering for the display of high-dynamic-range images’, ACM Trans. Graphics (TOG), 2002, 21, pp. 257266.
    24. 24)
      • 3. Albu, F., Vertan, C., Florea, C., et al: ‘One scan shadow compensation and visual enhancement of color images’. 2009 16th IEEE Int. Conf. on Image Processing (ICIP), Cairo, Egypt, 2009, pp. 31333136.
    25. 25)
      • 32. Cai, B., Xu, X., Guo, K., et al: ‘A joint intrinsic-extrinsic prior model for retinex’. Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, 2017, pp. 40004009.
    26. 26)
      • 43. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graphics (TOG), 2008, 27, p. 67.
    27. 27)
      • 40. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    28. 28)
      • 25. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: ‘A multiscale retinex for bridging the gap between color images and the human observation of scenes’, IEEE Trans. Image Process., 1997, 6, (7), pp. 965976.
    29. 29)
      • 5. Han, M., Lyu, Z., Qiu, T., et al: ‘A review on intelligence dehazing and color restoration for underwater images’, IEEE Trans. Syst. Man Cybern., Syst., 2020, 50, (5), pp. 18201832.
    30. 30)
      • 13. Fattal, R.: ‘Dehazing using color-lines’, ACM Trans. Graphics (TOG), 2014, 34, (1), p. 13.
    31. 31)
      • 16. Berman, D., Treibitz, T., Avidan, S., et al: ‘Non-local image dehazing’. Proc. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA., 2016, pp. 16741682.
    32. 32)
      • 49. Meng, C., Hua-Jun, F., Zhi-Hai, X., et al: ‘Exposure correction and detail enhancement for single ldr image’, Acta Photonica Sin., 2018, 47, (4), p. 410003.
    33. 33)
      • 22. Land, E.H., McCann, J.J.: ‘Lightness and retinex theory’, J. Opt. Soc. Am., 1971, 61, (1), pp. 111.
    34. 34)
      • 18. Song, Y., Jia, L., Wang, X., et al: ‘Single image dehazing using ranking convolutional neural network’, IEEE Trans. Multimed., 2017, PP, (99), pp. 11.
    35. 35)
      • 47. Liang, Z., Xu, J., Zhang, D., et al: ‘A hybrid l1-l0 layer decomposition model for tone mapping’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA., 2018, pp. 47584766.
    36. 36)
      • 12. Meng, G., Wang, Y., Duan, J., et al: ‘Efficient image dehazing with boundary constraint and contextual regularization’. Proc. IEEE International Conf. on Computer Vision, Sydney, Australia, 2013, pp. 617624.
    37. 37)
      • 6. Tarel, J.P., Hautiere, N.: ‘Fast visibility restoration from a single color or gray level image’. 2009 IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 2009, pp. 22012208.
    38. 38)
      • 7. Tarel, J.P., Hautiere, N., Cord, A., et al: ‘Improved visibility of road scene images under heterogeneous fog’. 2010 IEEE Intelligent Vehicles Symp., San Diego, CA, USA., 2010, pp. 478485.
    39. 39)
      • 45. Shan, Q., Jia, J., Brown, M.S.: ‘Globally optimized linear windowed tone mapping’, IEEE Trans. Vis. Comput. Graphics, 2010, 16, (4), pp. 663675.
    40. 40)
      • 51. Mittal, A., Soundararajan, R., Bovik, A.C.: ‘Making a’ completely blind' image quality analyzer.', IEEE Signal Process. Lett., 2013, 20, (3), pp. 209212.
    41. 41)
      • 39. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    42. 42)
      • 38. Barrett, R., Berry, M.W., Chan, T.F., et al: ‘Templates for the solution of linear systems: building blocks for iterative methods’, vol. 43 (SIAM, USA., 1994).
    43. 43)
      • 26. Kimmel, R., Elad, M., Shaked, D., et al: ‘A variational framework for retinex’, Int. J. Comput. Vis., 2003, 52, (1), pp. 723.
    44. 44)
      • 8. Tarel, J.P., Hautiere, N., Caraffa, L., et al: ‘Vision enhancement in homogeneous and heterogeneous fog’, IEEE Intell. Transp. Syst. Mag., 2012, 4, (2), pp. 620.
    45. 45)
      • 24. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: ‘Properties and performance of a center/surround retinex’, IEEE Trans. Image Process., 1997, 6, (3), pp. 451462.
    46. 46)
      • 44. Reinhard, E., Heidrich, W., Debevec, P., et al: ‘High dynamic range imaging: acquisition, display, and image-based lighting’ (Morgan Kaufmann, USA., 2010).
    47. 47)
      • 33. Gao, Y., Hu, H.M., Bo, L., et al: ‘Naturalness preserved non-uniform illumination estimation for image enhancement based on retinex’, IEEE Trans. Multimed., 2018, 20, (2), pp. 335344.
    48. 48)
      • 28. Wang, S., Zheng, J., Hu, H.M., et al: ‘Naturalness preserved enhancement algorithm for non-uniform illumination images’, IEEE Trans. Image Process., 2013, 22, (9), pp. 35383548.
    49. 49)
      • 27. Ng, M.K., Wang, W.: ‘A total variation model for retinex’, SIAM J. Imag. Sci., 2011, 4, (1), pp. 345365.
    50. 50)
      • 31. Guo, X., Li, Y., Ling, H.: ‘Lime: low-light image enhancement via illumination map estimation’, IEEE Trans. Image Process., 2017, 26, (2), pp. 982993.
    51. 51)
      • 30. Fu, X., Zeng, D., Huang, Y., et al: ‘A weighted variational model for simultaneous reflectance and illumination estimation’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA., 2016, pp. 27822790.
    52. 52)
      • 52. Gu, K., Tao, D., Qiao, J.F., et al: ‘Learning a no-reference quality assessment model of enhanced images with big data’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (4), pp. 13011313.
    53. 53)
      • 53. Yeganeh, H., Wang, Z.: ‘Objective quality assessment of tone-mapped images’, IEEE Trans. Image Process., 2013, 22, (2), pp. 657667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.1175
Loading

Related content

content/journals/10.1049/iet-ipr.2019.1175
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address