Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel superpixel-based algorithm for segmenting lung images via convolutional neural network and random forest

Accurately segmenting lungs from CT images is a fundamental step for quantitative analysis of lung diseases. However, it is still a challenging task because of some interferential factors, such as juxta-pleural nodules, pulmonary inflammation, as well as individual anatomical varieties. In this study, with the combination of a superpixel approach and a hybrid model composed of convolutional neural network and random forest (CNN-RF), the authors propose a novel algorithm to segment lungs from CT images in an automatic and accurate fashion. The authors' lung segmentation covers three main stages: image preprocessing, lung segmenting and segmentation refining. A lung CT image denoised with a fractional-order grey similarity approach is first segmented to a set of superpixels, and the CNN-RF model is then employed to classify the superpixels and identify lungs from the CT image. The segmentation result is further refined by separating the left and right lungs, eliminating trachea, and correcting lung contours. Experiments show that their algorithm can generate more accurate lung segmentation results with 94.98% Jaccard's index and 97.99% Dice similarity coefficient, compared with ground truths, and it achieved better results compared with several feature-based machine learning techniques and current methods on lung segmentation.

References

    1. 1)
      • 45. Altaf, T., Anwar, S., Gul, N., et al: ‘Multi-class alzheimer's disease classification using image and clinical features’, Biomed. Signal Process. Control, 2018, 43, pp. 6474.
    2. 2)
      • 32. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
    3. 3)
      • 8. Won, C., Kim, D., Lee, J., et al: ‘Lung segmentation by new curve stopping function using geodesic active contour model’, Ieice Trans. Fundam. Electron. Commun. Comput. Sci., 2006, 89-A, (6), pp. 17271729.
    4. 4)
      • 40. Li, X., Wang, X., Dai, Y., et al: ‘Supervised recursive segmentation of volumetric CT images for 3D reconstruction of lung and vessel tree’, Comput. Methods Programs Biomed., 2015, 122, (3), pp. 316329.
    5. 5)
      • 28. Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
    6. 6)
      • 42. Armato, S., Mclennan, G., Bidaut, L., et al: ‘The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans’, Acad. Radiol., 2007, 14, (12), pp. 145563.
    7. 7)
      • 18. Christodoulidis, S., Anthimopoulos, M., Ebner, L., et al: ‘Multi-source transfer learning with convolutional neural networks for lung pattern analysis’, IEEE J. Biomed. Health Inf., 2017, 21, (1), pp. 7684.
    8. 8)
      • 13. Hu, Z., Tang, J., Wang, Z., et al: ‘Deep learning for image-based cancer detection and diagnosis-a survey’, Pattern Recognit., 2018, 83, pp. 134149.
    9. 9)
      • 14. Xu, M., Qi, S., Yue, Y., et al: ‘Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset’, BioMed. Eng. OnLine, 2019, 18, (1), pp. 121.
    10. 10)
      • 17. Jalal, D., Ganesan, R., Merline, A.: ‘Fuzzy-c-means clustering based segmentation and CNN-classification for accurate segmentation of lung nodules’, Asian Pac. J. Cancer Prev., 2017, 18, (7), pp. 18691874.
    11. 11)
      • 1. Misra, A., Rudrapatna, M., Sowmya, A.: ‘Automatic lung segmentation: a comparison of anatomical and machine learning approaches’. Proc. Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Vic., Australia, 2004.
    12. 12)
      • 35. Sun, Y.: ‘Grey correlation analysis and its application research’, PhD thesis, Nanjing University of Aeronautics and Astronautics, 2007.
    13. 13)
      • 2. Pramod, K., Mrityunjaya, V.: ‘Lung parenchyma segmentation: fully automated and accurate approach for thoracic CT scan images’, IETE J. Res., 2018, 66, (3), pp. 114.
    14. 14)
      • 30. Hua, K., Hsu, C., Hidayati, S., et al: ‘Computer-aided classification of lung nodules on computed tomography images via deep learning technique’, OncoTargets Therapy, 2015, 8, pp. 20152022.
    15. 15)
      • 7. Arimura, H., Katsuragawa, S., Suzuki, K., et al: ‘Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening’, Acad. Radiol., 2004, 11, (6), pp. 617629.
    16. 16)
      • 34. Vincent, L.: ‘Morphological grayscale reconstruction in image analysis: applications and efficient algorithms’, IEEE Trans. Image Process., 1993, 2, (2), pp. 176201.
    17. 17)
      • 26. Wu, L., Liu, S., Yao, L.: ‘LDiscrete grey model based on fractional order accumulate’, Syst. Eng.-Theory Pract., 2014, 34, (7), pp. 18221827.
    18. 18)
      • 11. Liao, X., Zhao, J., Jiao, C., et al: ‘A segmentation method for lung parenchyma image sequences based on superpixels and a self-generating neural forest’, PloS one, 2016, 11, (8), pp. 125.
    19. 19)
      • 25. Huang, Z., Li, Q., Zhang, T., et al: ‘Iterative weighted sparse representation for X-ray cardiovascular angiogram image denoising over learned dictionary’, IET Image Process., 2018, 12, (2), pp. 254261.
    20. 20)
      • 20. Anthimopoulos, M., Christodoulidis, S., Ebner, L., et al: ‘Lung pattern classification for interstitial lung diseases using a deep convolutional neural network’, IEEE Trans. Med. Imaging, 2016, 35, (5), pp. 12071216.
    21. 21)
      • 23. Hariharan, B., Arbeláez, P., Girshick, R., et al: ‘Simultaneous detection and segmentation’. Proc. of European Conf. on Computer Vision, Zurich, Switzerland, 2014, pp. 116.
    22. 22)
      • 9. Yassine, B., Taylor, P., Story, A.: ‘Fully automated lung segmentation from chest radiographs using SLICO superpixels’, Analog Integr. Circuits Signal Process., 2018, 95, (3), pp. 423428.
    23. 23)
      • 38. Gurcan, M., Sahiner, B., Petrick, N., et al: ‘Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system’, Med. Phys., 2002, 29, (11), pp. 25522558.
    24. 24)
      • 44. Mapayi, T., Viriri, S., Tapamo, J.: ‘Retinal vessel segmentation based on phase congruence and GLCM sum-entropy’. IEEE Int. Conf. on Industrial Technology, Seville, Spain, 2015, pp. 175964.
    25. 25)
      • 19. Gao, M., Bagci, U., Lu, L., et al: ‘Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks’, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis., 2018, 6, (1), pp. 16.
    26. 26)
      • 6. Naqi, S., Sharif, M., Yasmin, M.: ‘Multistage segmentation model and SVM-ensemble for precise lung nodule detection’, Int. J. Comput. Assist. Radiol. Surg., 2018, 13, (7), pp. 10831095.
    27. 27)
      • 15. Wang, S., Zhou, M., Gevaert, O., et al: ‘A multi-view deep convolutional neural networks for lung nodule segmentation’. Proc. Int. Conf. on Engineering in Medicine & Biology Society, Seogwipo, South Korea, 2017, pp. 17521755.
    28. 28)
      • 24. Pereira, S., Pinto, A., Alves, V., et al: ‘Brain tumor segmentation using convolutional neural networks in MRI images’, IEEE Trans. Med. Imaging, 2016, 35, (5), pp. 12401251.
    29. 29)
      • 39. Shen, S., Bui, A., Cong, J., et al: ‘An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy’, Comput. Biol. Med., 2015, 57, pp. 139149.
    30. 30)
      • 3. Sahu, S., Agrawal, P., Londhe, N., et al: ‘A new hybrid approach using fuzzy clustering and morphological operations for lung segmentation in thoracic CT images’, Biomed. Pharmacol. J., 2017, 10, (4), pp. 19491961.
    31. 31)
      • 4. Liu, C., Pang, M.: ‘Automatic lung segmentation based on image decomposition and wavelet transform’, Biomed. Signal Proc. Control, 2020, 61, pp. 19.
    32. 32)
      • 22. Gidaris, S., Komodakis, N.: ‘Object detection via a multi-region and semantic segmentation-aware CNN model’. Proc. Int. Conf. on Computer Vision, Santiago, Chile, 2015, pp. 110.
    33. 33)
      • 36. Zhao, J., Ma, R., Qiang, Y., et al: ‘Solitary pulmonary nodule segmentation based on the rolling ball method’, J. Comput. Theor. Nanosci., 2015, 12, (8), pp. 19771983.
    34. 34)
      • 16. Kaur, S., Hooda, R., Mittal, A., et al: ‘Deep CNN-based method for segmenting lung fields in digital chest radiographs’. Proc. Int. Conf. on Advanced Informatics for Computing Research, Punjab, India, 2017, pp. 185194.
    35. 35)
      • 37. Armato, S., Giger, M., Doi, K., et al: ‘Computerized lung nodule detection: comparison of performance for low-dose and standard-dose helical CT scans’. Proc. of the Int. Society for Optical Engineering, Bellingham, Washington, 2001, 4322, (3), pp. 14491454.
    36. 36)
      • 10. Zhang, W., Zhang, X., Zhao, J., et al: ‘A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise’, PloS one, 2017, 12, (9), pp. 125.
    37. 37)
      • 12. Liu, C., Zhao, R., Pang, M.: ‘Lung segmentation based on random forest and multi-scale edge detection’, IET Image Process., 2019, 13, (10), pp. 17451754.
    38. 38)
      • 31. Estrach, J., Szlam, A., LeCun, Y.: ‘Signal recovery from pooling representations’. Proc. Int. Conf. on Machine Learning, Beijing, China, 2014, pp. 307315.
    39. 39)
      • 41. Depeursinge, A., Vargas, A., Platon, A., et al: ‘Building a reference multimedia database for interstitial lung diseases’, Comput. Med. Imaging Graph., 2012, 36, (3), pp. 227238.
    40. 40)
      • 21. Akkus, Z., Galimzianova, A., Hoogi, A., et al: ‘Deep learning for brain MRI segmentation: state of the art and future directions’, J. Digit. Imaging, 2017, 30, (4), pp. 449459.
    41. 41)
      • 5. Santos, A., de Carvalho Filho, A., Silva, A., et al: ‘Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, tsallis entropy and SVM’, Eng. Appl. Artif. Intell., 2014, 36, pp. 2739.
    42. 42)
      • 43. Sompong, C., Wongthanavasu, S.: ‘MRI brain tumor segmentation using GLCM cellular automata-based texture feature’. IEEE Int. Computer Science & Engineering Conf., Khon Kaen, Thailand, 2014, pp. 192197.
    43. 43)
      • 33. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), pp. 22742282.
    44. 44)
      • 27. Liu, S., Yang, Y., Wu, L., et al: ‘Grey system theory and its application’ (Science Press, Beijing, China, 2015, 7th edn.), p. p 77.
    45. 45)
      • 29. Lécun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. Inst. Electr. Electro. Eng., 1998, 86, (11), pp. 22782324.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.1171
Loading

Related content

content/journals/10.1049/iet-ipr.2019.1171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address