Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand–dust image enhancement

Images captured in the sand–dust weather often suffer from serious colour cast and poor contrast, and this has serious implications for outdoor computer vision systems. To address these problems, a normalised gamma transformation-based contrast-limited adaptive histogram equalisation (CLAHE) with colour correction in Lab colour space for sand–dust image enhancement is proposed in this study. This method consists of image contrast enhancement and image colour correction. To avoid producing new colour deviation, the input sand–dust images are first transformed from red, green, and blue colour space into Lab colour space. Then, the contrast of the lightness component (L channel) of the sand–dust image is enhanced using CLAHE. To avoid unbalanced contrast, as well as to reduce the overincreased brightness caused by CLAHE, a normalised gamma correction function is introduced to CLAHE. After that, the a and b chromatic components are recovered by a grey-world-based colour correction method. Experiments on real sand–dust images demonstrate that the proposed method can obtain the highest percentage of new visible edges for all testing images. The contrast restoration exhibits good colour fidelity and proper brightness.

References

    1. 1)
      • 5. Wang, J., Pang, Y.W., He, Y.Q.: ‘Enhancement for dust-sand storm images’. Proc. 22nd Int. Conf. Multimedia Modeling, New York, 2016, pp. 842849.
    2. 2)
      • 22. Getreuer, P.: ‘Automatic color enhancement (ACE) and its fast implementation’, Image Process. Line, 2012, 2, pp. 266277.
    3. 3)
      • 21. Rizzi, A., Gatta, C., Marini, D.: ‘Color correction between gray world and white patch’. Proc. SPIE 4662 Human Vision and Electronic Imaging VII, San Jose, CA, 2002, pp. 367375.
    4. 4)
      • 14. Shi, Z.H., Zhu, M., Zheng, X., et al: ‘Fast single-image dehazing method based on luminance dark prior’, Int. J. Pattern Recognit. Artif. Intell., 2017, 31, (2), pp. 19.
    5. 5)
      • 16. Fu, X.Y., Huang, Y., Zeng, D.L.: ‘A fusion-based enhancing approach for single sandstorm image’. Proc. 16th IEEE Int. Workshop on Multimedia Signal Processing, Jakarta, Indonesia, 2014, pp. 15.
    6. 6)
      • 9. Huang, S.C., Chen, B.H., Wang, W.J.: ‘Visibility restoration of single hazy images captured in real-world weather conditions’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (10), pp. 18141824.
    7. 7)
      • 29. Zuiderveld, K.: ‘Contrast limited adaptive histogram equalization’, in Heckbert, P. (Ed.): ‘Graphics gems IV’ (Academic Press, San Diego, USA, 1994), ISBN 0-12-336155-9, pp. 474485.
    8. 8)
      • 25. Liu, H., Li, C., Wan, Y.: ‘Dust image enhancement algorithm based on color transfer’, in Yang, J., et al (Ed.): ‘Computer vision. CCCV 2017. Communications in computer and information sciencevol. 771 (Springer, Singapore, 2017), pp. 168179.
    9. 9)
      • 26. Zhang, E., Zhang, Y., Duan, J.: ‘Color inverse half-toning method with the correlation of multi-color components based on extreme learning machine’, Appl. Sci., 2019, 9, (5), p. 841.
    10. 10)
      • 27. Tsai, C.M.: ‘Adaptive local power-law transformation for color image enhancement’, Appl. Math. Inf. Sci., 2013, 7, (5), pp. 20192026.
    11. 11)
      • 34. Shi, Z.H., Feng, Y.N., Zhao, M.H., et al: ‘Let you see in sand–dust weather: a method base on halo reduced dark channel prior dehazing for sand–dust image enhancement’, IEEE Access, 2019, 7, doi: 10.1109/ACCESS.2019.2936444, pp. 116722116735.
    12. 12)
      • 31. Hautière, N., Tarel, J.P., Aubert, D., et al: ‘Blind contrast enhancement assessment by gradient rationing at visible edges’, Image Anal. Stereol., 2008, 27, (2), pp. 8795.
    13. 13)
      • 32. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    14. 14)
      • 1. Yan, T., Wang, L.J., Wang, J.X.: ‘Method to enhance degraded image in dust environment’, J. Softw., 2014, 9, (10), pp. 26722677.
    15. 15)
      • 6. Ning, Z., Shanjun, M., Mei, L.: ‘Visibility restoration algorithm of dust-degraded images’, J. Image Graph., 2016, 21, (12), pp. 15851592.
    16. 16)
      • 7. Gao, H., Wei, P., Ke, J.: ‘Color enhancement and image defogging in HSI based on Retinex model’. Proc. SPIE 9622 2015 Int. Conf. Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology, Beijing, China, 2015, doi: 10.1117/12.2193264.
    17. 17)
      • 19. Rongzheng, Z., Jie, H., Zhiliang, H.: ‘Adaptive algorithm of auto white balance for digital camera’, J. Comput.-Aided Des. Comput. Graph., 2005, 17, (3), pp. 529533.
    18. 18)
      • 12. Zhu, Q., Mai, J., Shao, L.: ‘A fast single image haze removal algorithm using color attenuation prior’, IEEE Trans. Image Process., 2015, 24, (11), pp. 35223533.
    19. 19)
      • 8. Huang, S.C., Cheng, F.C., Chiu, Y.S.: ‘Efficient contrast enhancement using adaptive gamma correction with weighting distribution’, IEEE Trans. Image Process., 2013, 22, (3), pp. 10321042.
    20. 20)
      • 15. Yu, S.Y., Zhu, H., Wang, J.: ‘Single sand–dust image restoration using information loss constraint’, J. Mod. Opt., 2016, 63, (21), pp. 21212130.
    21. 21)
      • 20. Liu, C., Chen, X., Wu, Y.: ‘Modified grey world method to detect and restore colour cast images’, IET Image Process., 2019, 13, (7), pp. 10901096.
    22. 22)
      • 10. Tan, R.T.: ‘Visibility in bad weather from a single image’. Proc. 2008 IEEE Conf. Computer Vision Pattern Recognition, Anchorage, AK, USA, June 2008, pp. 18.
    23. 23)
      • 2. Kim, J.Y., Kim, L.S., Hwang, S.H.: ‘An advanced contrast enhancement using partially overlapped sub-block histogram equalization’, IEEE Trans. Circuits Syst. Video Technol., 2001, 11, (4), pp. 475484.
    24. 24)
      • 11. He, K.M., Sun, J., Tang, X.O.: ‘Single image haze removal using dark channel prior’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 23412353.
    25. 25)
      • 4. Yan, T., Wang, L.J., Wang, J.X.: ‘Video image enhancement method research in the dust environment’, Laser J., 2014, 4, pp. 2325.
    26. 26)
      • 3. Liu, Q., Chen, M.Y., Zhou, D.H.: ‘Single image haze removal via depth-based contrast stretching transform’, Sci. China Inf. Sci., 2015, 58, (1), pp. 117.
    27. 27)
      • 17. Tang, K.T., Yang, J.C., Wang, J.: ‘Investigating haze-relevant features in a learning framework for image dehazing’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 29953012.
    28. 28)
      • 33. Abdoli, M., Nasiri, F., Brault, P., et al: ‘Quality assessment tool for performance measurement of image contrast enhancement methods’, IET Image Process., 2019, 13, (5), pp. 833842.
    29. 29)
      • 24. Kratz, L., Nishino, K.: ‘Factorizing scene albedo and depth from a single foggy image’. Proc. IEEE 12th Int. Conf. Computer Vision 2009, Kyoto, Japan, 2009, pp. 17011708.
    30. 30)
      • 13. Narasimhan, S.G., Nayar, S.K.: ‘Contrast restoration of weather degraded images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (6), pp. 713724.
    31. 31)
      • 23. Kwon, K.J., Kim, Y.H.: ‘Scene-adaptive RGB-to-RGBW conversion using Retinex theory-based color preservation’, J. Disp. Technol., 2012, 8, (12), pp. 684694.
    32. 32)
      • 28. Huynh-Thu, Q., Ghanbari, M.: ‘Scope of validity of PSNR in image/video quality assessment’, Electron. Lett., 2008, 44, (13), pp. 800801.
    33. 33)
      • 18. Cai, B., Xu, X., Jia, K., et al: ‘DehazeNet: an end-to-end system for single image haze removal’, IEEE Trans. Image Process., 2016, 25, (11), pp. 51875198.
    34. 34)
      • 30. Jobson, D.J., Rahman, Z., Woodell, G.: ‘A multiscale Retinex for bridging the gap between color images and the human observation of scenes’, IEEE Trans. Image Process., 1997, 6, (7), pp. 965976.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0992
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0992
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address