access icon free Efficient segmentation of lumbar intervertebral disc from MR images

Segmentation of spine Magnetic Resonance Images (MRIs) has become an indispensable process in the diagnosis of lumbar disc degeneration, causing low back pain. Over the last decade of years, computer-directed diagnosis of disease, as well as computer-guided spine surgery, is based on the two-dimensional (2D) analysis of mid-sagittal slice of MRI. This work proposes an automatic strategy to extract the 3D segmentation of the normal disc as well as degenerated lumbar intervertebral discs (IVDs) from T2-weighted Turbo Spin Echo MRI of the spine using Connected Component (CC) analysis algorithm and statistical shape analysis. The challenges faced by the IVD segmentation includes (i) partial volume effects (ii) intensity inhomogeneity (iii) grey level overlap of different soft tissues. The proposed method first pre-processes the dataset and enables it for the application of the CC algorithm. The CC (subsets of pixels of the disc) of the spine MRI is extracted and apply statistical shape analysis for the refinement of the segmentation results to detect IVDs. Experimental results of the proposed method show a robust segmentation, accomplishing the dice similarity index of 92.4% and thus achieving a low error rate. Other performance measures such as Precision, Accuracy, JaccardIdx, JaccardDist, Global Consistency Error, Variation of Information, etc were also evaluated. The algorithm is evaluated quantitatively using adequate experiments on a dataset of 15 MRI scans, of different scenarios such as healthy and degenerate disc and this proposed method is verified as a promising accurate method for the automatic segmentation of IVD.

Inspec keywords: neurophysiology; bone; biomechanics; diseases; image segmentation; medical image processing; surgery; biomedical MRI; orthopaedics

Other keywords: MR images; IVD segmentation; degenerate disc; statistical shape analysis; spine Magnetic Resonance Images; robust segmentation; low back pain; lumbar disc degeneration; T2-weighted Turbo Spin Echo MRI; computer-guided spine surgery; automatic segmentation; degenerated lumbar intervertebral discs; Connected Component analysis algorithm; different soft tissues; computer-directed diagnosis; spine MRI; healthy disc; automatic strategy; normal disc; indispensable process; 15 MRI scans; lumbar intervertebral disc; efficient segmentation; two-dimensional analysis; CC algorithm; low error rate

Subjects: Medical magnetic resonance imaging and spectroscopy; Biology and medical computing; Optical, image and video signal processing; Patient diagnostic methods and instrumentation; Other topics in statistics; Computer vision and image processing techniques; Biomedical magnetic resonance imaging and spectroscopy

References

    1. 1)
      • 30. Wang, Z., Zhen, X., Tay, K., et al: ‘Regression segmentation for 3M spinal images’, IEEE Trans. Med. Imaging, 2015, 34, (8), pp. 16401648.
    2. 2)
      • 50. Leena Silvoster, M., Govindan, V.K.: ‘Enhancement of CNN based EM image segmentation’, Cybern. Inf. Technol., 2012, 12, pp. 8497.
    3. 3)
      • 44. Chevrefils, C., , Aubin, É., Grimard, Cheriet, F., G.: ‘Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, pp. 608620.
    4. 4)
      • 33. Hu, Q., Qian, G., Nowinski, W.L.: ‘Fast connected-component labeling in three- dimensional binary images based on iterative recursion’, Comput. Vis. Image Underst., 2005, 99, (3), pp. 414434.
    5. 5)
      • 11. Wang, Q., Tao, Y., Lin, H: ‘Edge-aware volume smoothing using L0 gradient minimization’, Computer Graphics Forum, 2015, 34, (3), pp. 131140.
    6. 6)
      • 27. Zhan, Y., Maneesh, D., Harder, M., et al: ‘Robust MR spine detection using hierarchical learning and local articulated model’ (LNCS7510). Medical Image Computing and Computer-Assisted Intervention (MICCAI 2012), Nice, France, 2012, pp. 141148.
    7. 7)
      • 49. LeenaSilvoster, M., Govindan, V.K.: ‘Convolutional neural network based segmentation’. Springer 5th Int. Conf. On Information processing (ICIP 2011), Bangalore, India, 2011, pp. 190197.
    8. 8)
      • 25. Michopoulou, S., Costaridou, L., Panagiotopoulos, E., et al: ‘Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine’, IEEE Trans. Biomed. Eng., 2009, 56, pp. 22252231.
    9. 9)
      • 6. Webb, R., Brammah, T., Lunt, M., et al: ‘Prevalence and predictors of intense, chronic, and disabling neck and back pain in the U K general population’, Spine, 2003, 28, pp. 11951202.
    10. 10)
      • 35. Lehmann, T.M., Gonner, C., Spitzer, K.: ‘Survey: interpolation methods in medical image processing’, IEEE Trans. Med. Imaging, 1999, 18, pp. 10491075.
    11. 11)
      • 46. Ji, X., Zheng, G., Belavy, D., et al: ‘Automated intervertebral disc segmentation using deep convolutional neural networks’. Proc. of the Int. Workshop on Computational Methods and Clinical Applications for Spine Imaging, Athens, Greece, 2016, pp. 3848.
    12. 12)
      • 29. Chen, C., Belavy, D., Yu, W., et al: ‘Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation’, IEEE Trans. Med. Imaging, 2015, 34, (8), pp. 17191729.
    13. 13)
      • 26. Seifert, S., Wachter, I., Schmelzle, G., et al: ‘A knowledge-based approach to soft tissue reconstruction of the cervical spine’, IEEE Trans. Med. Imaging, 2009, 28, pp. 494507.
    14. 14)
      • 30. Wang, Z., Zhen, X., Tay, K., et al: ‘Regression segmentation for M3 spinal images’, IEEE Trans. Med. Imaging, 2015, 34, (8), pp. 16401648.
    15. 15)
      • 20. Chwialkowski, M., Shile, P., Peshock, R., et al: ‘Automated detection and evaluation of lumbar discs in MR images’. Proc. of the Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Seattle, WA, USA., 1989, pp. 571572.
    16. 16)
      • 3. Leena Silvoster, M., Kumar, M.S.: ‘Efficient identification of dessicated lumbar IVD from MRI’, The IIOAB J. Emerging Technol. Netw. Secur., 2016, 7, pp. 2633.
    17. 17)
      • 21. Nasiri, F., Zade, H.S.: ‘Automatic segmentation of intervertebral disk from MR images of the spine based on graph cut method’. IEEE 8th Iranian Conf. on Machine Vision and Image Processing, Zanjan, Iran, 2013, pp. 300303.
    18. 18)
      • 28. Kelm, M., Wels, M., Zhou, S., et al: ‘Spine detection in CT and MR using iterated marginal space learning’, Med. Image Anal., 2013, 17, (8), pp. 12831292.
    19. 19)
      • 52. Kim, S., Bae, W., Masuda, K., et al: ‘Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-Net’, Appl. Sci., 2018, 8, p. 1656.
    20. 20)
      • 53. Ronneberger, O., Fischer, P., Brox, T.: ‘U-net: convolutional networks for biomedical image segmentation’. 2015 Proc. of the Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Switzerland, Munich, Germany, 5–9 October 2015, pp. 234241.
    21. 21)
      • 12. Xu, L., Lu, C., Xu, Y., et al: ‘Image smoothing via L0 gradient minimization’, ACM Trans. Graph., 2011, 30, p. 174.
    22. 22)
      • 8. Lin, C.-C., Sheu, M.-H., Chiang, H.-K., et al: ‘The efficient VLSI design of bi-cubic convolution interpolation for digital image processing’. IEEE Int. Symp. on Circuits and Systems, Seattle, WA, USA., 2008, pp. 480483.
    23. 23)
      • 17. Corso, J.J., Raja's, A., Chaudhary, V.: ‘Lumbar disc localization and labeling with a probabilistic model on both pixel and object features’. Springer Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, New York, NY, USA., 2008, pp. 202210.
    24. 24)
      • 5. Hoy, D., Brooks, P., Blyth, F., et al: ‘The epidemiology of low back pain’, Best Pract. Res Clinical Rheumatol., 2010, 24, pp. 769781.
    25. 25)
      • 19. Li, C., Kao, C.Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, pp. 19401949.
    26. 26)
      • 43. Korfiatis, P., Skiadopoulos, S., Sakellaropoulos, P., et al: ‘Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT’, British J. Radiol., 2007, 80, pp. 9961004.
    27. 27)
      • 1. Vovk, U., Pernus, F., Likar, B.: ‘A review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, pp. 405421.
    28. 28)
      • 38. Rand, W.M.: ‘Objective criteria for the evaluation of clustering methods’, J. Am. Stat. Assoc., 1971, 66, pp. 846850.
    29. 29)
      • 42. van Rijsbergen, C.J.: ‘Information retrieval’ (Butterworth, London, 1979).
    30. 30)
      • 54. Lootus, M.: 2015‘Automated radiological analysis of spinal MRI’. PhD thesis, University of Oxford.
    31. 31)
      • 23. Castro-Mateos, I., Pozo, J.M., Lazary, A., et al: ‘2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images’. SPIE Medical Imaging, San Diego, California, USA., 2014, p. 903517.
    32. 32)
      • 7. Peterson, C.K., Bolton, J.E., Wood, A.R.: ‘A cross-sectional study correlating lumbar spine degeneration with disability and pain’, Spine, 2000, 25, p. 218.
    33. 33)
      • 10. L, Vincent: ‘Morphological grayscale reconstruction in image analysis: applications and efficient algorithms’, IEEE Trans. Image Process., 1993, 2, pp. 176201.
    34. 34)
      • 16. Wachter, I., Seifert, S., Dillmann, R.: ‘Automatic segmentation of cervical soft tissue from MR images’. Proc. of Surgetica, Chambery, 2005.
    35. 35)
      • 15. Shi, R., Sun, D., Qiu, Z., et al: ‘An efficient method for segmentation of MRI spine images’. IEEE/ICME Int. Conf. on Complex Medical Engineering, Beijing, People's Republic of China, 2007, pp. 713717.
    36. 36)
      • 51. Leena Silvoster, M., Govindan, V.K.: ‘Convolutional neural network based segmentation’, Communications in Computer and Information Science, 2012, 157, pp. 190197.
    37. 37)
      • 48. Chen, H., Dou, Q., Wang, X., et al: ‘3D fully convolutional networks for intervertebral disc localization and segmentation’. Springer Int. Conf. on Medical Imaging and Augmented Reality, Bern, Switzerland, 2016, pp. 375382.
    38. 38)
      • 39. Meila, M.: ‘Comparing clusterings by the variation of information’. 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA., vol. 3’, August 2003, pp. 173187.
    39. 39)
      • 36. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, pp. 13971409.
    40. 40)
      • 18. Carballido-Gamio, J., Belongie, S.J., Majumdar, S.: ‘Normalized cuts in 3-D for spinal MRI segmentation’, IEEE Trans. Med. Imaging, 2004, 23, pp. 3644.
    41. 41)
      • 4. Vogt, M.T., Lauerman, W.C., Chirumbole, M., et al: ‘A community-based study of postmenopausal white women with back and leg pain: health status and limitations in physical activity’, J. Gerontol. A, Biol. Sci. Med. Sci., 2002, 57, pp. 544550.
    42. 42)
      • 32. Lumia, R., Shapiro, L., Zungia, O.: ‘A new connected components algorithm for virtual memory computers’, Comput. Vision Graphics Image Process, 1983, 22, (2), pp. 287300.
    43. 43)
      • 41. Jaccard, P.: ‘The distribution of the flora in the alpine zone’, New Phytologist, 1912, 11, pp. 3750.
    44. 44)
      • 40. Martin, D., Fowlkes, C., Tal, D., et al: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Eighth IEEE Int. Conf. on ICCV Computer Vision, Vancouver, BC, Canada, 2001, vol. 2, pp. 416423.
    45. 45)
      • 13. Roberts, N., Gratin, C., Whitehouse, G.H.: ‘MRI analysis of lumbar intervertebral disc height in young and older populations’, J. Magn. Reson. Imag., 1997, 7, pp. 880886.
    46. 46)
      • 14. Chevrefils, C., Chériet, F., Grimard, G., et al: ‘Watershed segmentation of intervertebral disk and spinal canal from MRI images’. Int. Conf. Image Analysis and Recognition, Montreal, Canada, 2007, pp. 10171027.
    47. 47)
      • 45. Ayed, I.B., Punithakumar, K., Garvin, G., et al: ‘Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation’. Springer Biennial Int. Conf. on Information Processing in Medical Imaging, Kloster, Irsee, Germany, 2011, pp. 221232.
    48. 48)
      • 2. Mirowitz, S.A., Apicella, P., Reinus, W.R., et al: ‘MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images’, AJR, 1994, 162, pp. 215221.
    49. 49)
      • 47. Zeng, G., Zheng, G.: ‘DSMS-FCN: a deeply supervised multiscale fully convolutional network for automatic segmentation of intervertebral disc in 3D MR images’. Int. Workshop and Challenge on Computational Methods and Clinical Applications in Musculoskeletal Imaging,, 2017, pp. 148159.
    50. 50)
      • 37. Freixenet, J., : ‘Muñoz, X., : ‘Raba, D., et al: ‘Yet another survey on image segmentation: region and boundary information integration’. Computer Vision, European Conference on Computer Vision (ECCV) 2002, Copenhagen, Denmark, 2002, pp. 2125.
    51. 51)
      • 9. Prokop, M., Schaefer, C.M., Oestmann, J.W., et al: ‘Improved parameters for unsharp mask filtering of digital chest radiographs’, Radiology, 1993, 187, pp. 521526.
    52. 52)
      • 22. Neubert, A., Fripp, J., Engstrom, C., et al: ‘Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models’, Phys. Med. Biol., 2012, 57, p. 8357.
    53. 53)
      • 24. Kadoury, S., Labelle, H., Paragios, N.: ‘Automatic inference of articulated spine models in CT images using high-order markov random fields’, Med. Image Anal., 2011, 15, pp. 426437.
    54. 54)
      • 34. Zuiderveld, K.: ‘Contrast limited adaptive histograph equalization’, Graphic Gems, 1994, 4, pp. 474485.
    55. 55)
      • 31. Haralick, R.M.: ‘Some neighborhood operations’ in real time/Parallel computing image analysis (Plenum Press, New York, 1981), pp. 1135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0971
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0971
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading