access icon free Unsupervised multiscale retinal blood vessel segmentation using fundus images

Blood vessel segmentation is a vital step in automated diagnosis of retinal diseases. Some retinal diseases progress with structural changes in the vessels whereas in others, vessels may remain unaffected. Segmentation of vessels is inevitable in both the cases. The extracted vessel map can be studied for these structural changes or can be removed to highlight other abnormalities of the retina. This study presents a rule-based retinal blood vessel segmentation algorithm. It implements two multi-scale approaches, local directional-wavelet transform and global curvelet transform, together in a novel manner for vessel enhancement and thereby segmentation. The authors have proposed a generic field-of-view mask for extraction of region-of-interest. Further, a morphological thickness-correction step, to recover vessel-boundary pixels, is also proposed. The significant contribution of this work is, segmentation of fine vessels while preserving the thickness of major vessels. Moreover, the algorithm is robust, as it performs consistently well, on four public databases, DRIVE, STARE, CHASE_DB-1 and HRF. Performance of the proposed algorithm is evaluated in terms of eight measures : accuracy, sensitivity, specificity, precision, F-1 score, G-mean, MCC and AUC, where it has outperformed many other existing methods. Zero data dependency gives the suggested algorithm, an edge over other state-of-the-art supervised methods.

Inspec keywords: blood vessels; diseases; medical image processing; eye; curvelet transforms; biomedical optical imaging; image segmentation; wavelet transforms; image enhancement

Other keywords: morphological thickness-correction; retinal image analysis; directional-wavelet transform; structural changes; retinal disease; unsupervised multiscale retinal blood vessel segmentation; curvelet transform; rule-based retinal blood vessel segmentation algorithm; vessel enhancement

Subjects: Optical, image and video signal processing; Physiological optics, vision; Integral transforms; Optical and laser radiation (biomedical imaging/measurement); Function theory, analysis; Optical and laser radiation (medical uses); Integral transforms; Haemodynamics, pneumodynamics; Patient diagnostic methods and instrumentation; Biology and medical computing; Computer vision and image processing techniques

References

    1. 1)
      • 16. Soares, J., Leandro, J.J., Cesar, R.M., et al: ‘Retinal vessel segmentation using the 2D gabor wavelet and supervised classification’, IEEE Trans. Med. Imag., 2006, 25, (9), pp. 12141222.
    2. 2)
      • 5. Chakraborti, T., Jha, D.K., Chowdhury, A.S., et al: ‘A self-adaptive matched filter for retinal blood vessel detection’, Mach. Vis. Appl., 2014, 26, (1), pp. 5568.
    3. 3)
      • 3. Hoover, A., Kouznetsova, V., Goldbaum, M.H.: ‘Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    4. 4)
      • 1. Moccia, S., De Momi, E., El Hadji, S., et al: ‘Blood vessel segmentation algorithms – review of methods, datasets and evaluation metrics’, Comp. Methods Prog. Biomed., 2018, 158, pp. 7191.
    5. 5)
      • 7. Mendonca, A., Campilho, A.: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imag., 2006, 25, (9), pp. 12001213.
    6. 6)
      • 35. Fraz, M.M., Basit, A., Barman, S.A.: ‘Application of morphological bit planes in retinal blood vessel extraction’, J. Digit. Imaging, 2013, 26, (2), pp. 274286.
    7. 7)
      • 10. Sum, K.W., Cheung, P.Y.: ‘Vessel extraction under non-uniform illumination: a level set approach’, IEEE Trans. Biomed. Eng., 2008, 55, (1), pp. 358360.
    8. 8)
      • 4. Zhang, B., Zhang, L., Zhang, L., et al: ‘Retinal vessel extraction by matched filter with first-order derivative of gaussian’, Comp. Biol. Med., 2010, 40, (4), pp. 438445.
    9. 9)
      • 25. Zhang, Y., Chung, A.C.S.: ‘Deep supervision with additional labels for retinal vessel segmentation task’. 21st Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Granada, Spain, September 2018, pp. 8391.
    10. 10)
      • 32. Pisano, E.D., Zong, S., Hemminger, B.M., et al: ‘Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms’, J. Dig. Imaging, 1998, 11, (4), pp. 193200.
    11. 11)
      • 20. Marín, D., Aquino, A., Gegúndez-Arias, M.E., et al: ‘A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features’, IEEE Trans. Med. Imaging, 2011, 30, (1), pp. 146158.
    12. 12)
      • 12. Biswal, B., Pooja, T., Subrahmanyam, N.B.: ‘Robust retinal blood vessel segmentation using line detectors with multiple masks’, IET Image Process., 2017, 12, (3), pp. 389399.
    13. 13)
      • 13. Azzopardi, G., Strisciuglio, N., Vento, M., et al: ‘Trainable COSFIRE filters for vessel delineation with application to retinal images’, Med. Image Anal., 2015, 19, (1), pp. 4657.
    14. 14)
      • 19. Ricci, E., Perfetti, R.: ‘Retinal blood vessel segmentation using line operators and support vector classification’, IEEE Trans. Med. Imag., 2007, 26, (10), pp. 13571365.
    15. 15)
      • 6. Zana, F., Klein, J.C.: ‘Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation’, IEEE Trans. Image Process., 2001, 10, (7), pp. 10101019.
    16. 16)
      • 18. Staal, J.J., Abràmoff, M.D., Niemeijer, M., et al: ‘Ridge based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    17. 17)
      • 15. Fan, Z., Lu, J., Wei, C., et al: ‘A hierarchical image matting model for blood vessel segmentation in fundus images’, IEEE Trans. Image Process., 2019, 28, (5), pp. 23672377.
    18. 18)
      • 24. Li, Q., Feng, B., Xie, L., et al: ‘A cross-modality learning approach for vessel segmentation in retinal images’, IEEE Trans. Med. Imaging, 2016, 35, (1), pp. 109118.
    19. 19)
      • 30. Candès, E., Demanet, L., Donoho, D., et al: ‘Fast discrete curvelet transforms’, Multiscale Model. Simul., 2006, 5, (3), pp. 861899.
    20. 20)
      • 34. Miri, M.S., Mahloojifar, A.: ‘Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction’, IEEE Trans. Biomed. Eng., 2011, 58, (5), pp. 11831192.
    21. 21)
      • 37. Perez-Rovira, A., Zutis, K., Hubschman, J.P., et al: ‘Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms’. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Boston, September 2011, pp. 26142617.
    22. 22)
      • 11. Nguyen, U.T.V., Bhuiyan, A., Park, L.A., et al: ‘An effective retinal blood vessel segmentation method using multi-scale line detection’, Pattern Recognit., 2013, 46, (3), pp. 703715.
    23. 23)
      • 29. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice-Hall, Upper Saddle River, NJ, USA, 1992, 2nd edn., 2002).
    24. 24)
      • 27. Niemeijer, M., Staal, J., Ginneken, B.V., et al: ‘Comparative study of retinal vessel segmentation methods on a new publicly available database’. Med. Imag.: Image Processing, Int. Society for Optics and Photonics, San Diego, California, United States, February 2004, pp. 648656.
    25. 25)
      • 23. Yan, Z., Yang, X., Cheng, K.: ‘Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation’, IEEE Trans. Biomed. Eng., 2018, 65, (9), pp. 19121923.
    26. 26)
      • 8. Delibasis, K.K., Kechriniotis, A.I., Tsonos, C., et al: ‘Automatic model-based tracing algorithm for vessel segmentation and diameter estimation’, Comp. Methods Prog. Biomed., 2010, 100, (2), pp. 108122.
    27. 27)
      • 36. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: ‘Iterative vessel segmentation of fundus images’, IEEE Trans. Biomed. Eng., 2015, 62, (7), pp. 17381749.
    28. 28)
      • 17. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘An ensemble classification-based approach applied to retinal blood vessel segmentation’, IEEE Trans. Biomed. Eng., 2012, 59, (9), pp. 25382548.
    29. 29)
      • 14. Odstrcilk, J., Kolar, R., Budai, A., et al: ‘Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database’, IET Image Process., 2013, 7, (4), pp. 373383.
    30. 30)
      • 26. Lahiri, A., Ayush, K., Kumar Biswas, P., et al: ‘Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: automated vessel segmentation in retinal fundus image as test case’. Conf. on Comp. Vision and Pattern Recog. Workshops, Honolulu, Hawaii, July 2017, pp. 4248.
    31. 31)
      • 2. Chaudhuri, S., Chatterjee, S., Katz, N., et al: ‘Detection of blood vessels in retinal images using two-dimensional matched filters’, IEEE Trans. Med. Imaging, 1989, 8, (3), pp. 263269.
    32. 32)
      • 31. Starck, J., Donoho, D., Candès, E., et al: ‘Gray and color image contrast enhancement by the curvelet transform’, IEEE Trans. Image Process., 2003, 12, (6), pp. 706717.
    33. 33)
      • 21. Kar, S.S., Maity, S.P., Delpha, C., et al: ‘Retinal blood vessel extraction using curvelet transform and conditional fuzzy entropy’. Proc. of the 22nd European Sig. Processing Conf. (EUSIPCO), Lisbon, Portugal, September 2014, pp. 18211825.
    34. 34)
      • 33. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: ‘A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images’, IEEE Trans. Biomed. Eng., 2017, 64, (1), pp. 1627.
    35. 35)
      • 9. Al-Diri, B., Hunter, A., Steel, D.: ‘An active contour model for segmenting and measuring retinal vessels’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 14881497.
    36. 36)
      • 28. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cyber., 1979, 9, (1), pp. 6266.
    37. 37)
      • 22. Liskowski, P., Krawiec, K.: ‘Segmenting retinal blood vessels with deep neural networks’, IEEE Trans. Med. Imaging, 2016, 35, (11), pp. 23692380.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0969
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0969
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading